Investigation of regular and chaotic modes of the FitzHugh-Nagumo fractal oscillator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 116-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the conditions for the existence of chaotic and regular oscillatory regimes of the hereditary oscillator FitzHugh-Nagumo (EFN), a mathematical model for the propagation of a nerve impulse in a membrane. To achieve this goal, using the non-local explicit finite-difference scheme and Wolf’s algorithm with the Gram-Schmidt orthogonalization procedure, the Lyapunov maximum exponent spectra were constructed as a function of the values of the control parameters of the model of the EFN. The results of the calculations showed that there are spectra of maximum Lyapunov exponents both with positive values and with negative values. The results of the calculations were also confirmed with the help of oscillograms and phase trajectories, which indicates the possibility of the existence of both chaotic attractors and limit cycles.
Keywords: limit cycle, FitzHugh-Nagumo oscillator with power memory, the spectrum of Lyapunov maximum exponents, oscillograms and phase trajectories.
@article{VKAM_2018_3_a13,
     author = {O. D. Lipko},
     title = {Investigation of regular and chaotic modes of the {FitzHugh-Nagumo} fractal oscillator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {116--123},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a13/}
}
TY  - JOUR
AU  - O. D. Lipko
TI  - Investigation of regular and chaotic modes of the FitzHugh-Nagumo fractal oscillator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 116
EP  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a13/
LA  - ru
ID  - VKAM_2018_3_a13
ER  - 
%0 Journal Article
%A O. D. Lipko
%T Investigation of regular and chaotic modes of the FitzHugh-Nagumo fractal oscillator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 116-123
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a13/
%G ru
%F VKAM_2018_3_a13
O. D. Lipko. Investigation of regular and chaotic modes of the FitzHugh-Nagumo fractal oscillator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 116-123. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a13/

[1] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE., 1962, no. 50, 2061–2070 | DOI

[2] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1961, no. 1, 446-466 | MR

[3] Spirtus V. B., “Vozmozhnosti biofizicheskih modelej tipa FitcKH'yu-Nagumo v otobrazhenii dvumernoj migracii sejsmichnosti”, Geofizicheskij zhurnal, 32:1 (2010), 134-143

[4] Parovik R. I., “On a Credit Oscillatory System with the Inclusion of Stick-Slip”, E3S Web of Conferences, 11 (2016), 00018 | DOI

[5] Vronskij A. P., “Javlenie posledejstvija v tverdom tele”, AN SSSR. Prikladnaja matematika i mehanika, 5:1 (1941), 31–56

[6] Volterra V., “Sur les Equations Integro-Differentielleset Leurs Applications”, Acta Mathematica, 35:1 (1912), 295-356 | DOI | MR | Zbl

[7] Schroeder M., Fractals, chaos, power laws: Minutes from an infinite paradise, Freeman, 1992, 429 pp. | MR

[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[9] Lipko O. D., “Mathematical model of nerve impulse propagation with regard to heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 52-60 | MR

[10] Lipko O. D., “Dinamicheskaya sistema FitcKH'yu-Nagumo”, Aktual'nye problemy prikladnoj matematiki i fiziki, Materialy Mezhdunarodnoj nauchnoj konferencii, IPMA KBNC RAN, Nal'chik, 2017, 126-127

[11] Gerasimov A. N., “Obobshchenie linejnyh zakonov deformacii i ih prilozhenie k zadacham vnutrennego treniya”, AN SSSR. Prikladnaya matematika i mekhanika, 1948, no. 2, 529-539

[12] Caputo M., Elasticit ` a e dissipazione., Zanichelli, Bologna, 1969, 150 pp.

[13] Lipko O. D., Parovik R. I., “Issledovanie haoticheskih i regulyarnyh rezhimov fraktal'nogo oscillyatora FitcKH'yu-Nagumo”, Aktual'nye problemy prikladnoj matematiki, Materialy IV Mezhdunarodnoj nauchnoj konferencii, 2018, 157

[14] Wolf A. et al., “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, 1985, no. 16(3), 285—317 | DOI | MR | Zbl

[15] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 134 pp.

[16] Parovik R.I., “CHislennyj analiz zadachi Koshi dlya shirokogo klassa fraktal'nyh oscillyatorov”, Vestnik KRAUNC. Fiz.-mat. nauki, 2018, no. 1(21), 93-116 | MR

[17] Parovik R. I., “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 61-68