Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 98-105
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the study of nonlinear systems, one of the important problems is the determination of the type of oscillations-periodic, quasi-periodic, random, chaotic. It is especially difficult to distinguish between quasi-periodic oscillations from chaotic and random oscillations, since quasi-periodic oscillations often have a very complex shape, visually weakly distinguishable from «random». A feature of chaotic oscillations is their high sensitivity to small changes in the initial conditions. Therefore, one of the most reliable ways of detecting chaos is to determine the rate of run-off of trajectories, which is estimated using the Lyapunov exponent spectrum. Using the construction of the spectrum of Max Lyapunov exponents, depending on the values of the control parameters, chaotic regimes of the Duffing fractal oscillator with variable power memory were found, and its phase trajectories.
Keywords: spectrum of maximum Lyapunov exponents, Duffing fractal oscillator, phase trajectories, limit cycle, chaotic attractor.
@article{VKAM_2018_3_a11,
     author = {V. A. Kim and R. I. Parovik},
     title = {Calculation the maximum {Lyapunov} exponent for the oscillatory system of {Duffing} with a degree memory},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {98--105},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/}
}
TY  - JOUR
AU  - V. A. Kim
AU  - R. I. Parovik
TI  - Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 98
EP  - 105
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/
LA  - ru
ID  - VKAM_2018_3_a11
ER  - 
%0 Journal Article
%A V. A. Kim
%A R. I. Parovik
%T Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 98-105
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/
%G ru
%F VKAM_2018_3_a11
V. A. Kim; R. I. Parovik. Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 98-105. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/

[1] Anishchenko V. S., Vadivasova T. E., Lekcii po nelinejnoj dinamike, Regulyarnaya i haoticheskaya dinamika, Izhevsk, 2011, 516 pp.

[2] Tavazoei M. S., Haeri M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628–2637 | DOI | MR | Zbl

[3] Verisokin A. YU., “Opredelenie pokazatelej Lyapunova na primere modeli Sel'kova v prisutstvii vneshnej periodicheskoj sily”, Uchenye zapiski. EHlektronnyj nauchnyj zhurnal Kurskogo gosudarstvennogo universiteta, 2013, no. 2(26), 18-29 | MR

[4] Duffing G., “Elastizit at und Reibung beim Riementrieb”, Forschung auf dem Gebiet des Ingenieurwesens A, 2:3 (1931), 99–104 | DOI | Zbl

[5] Parovik R. I., “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 61-68

[6] Drobysheva I. V., “Mathematical modeling of nonlinear hereditary oscillators on the example of Duffing oscillator with fractional derivatives in the sense of Riemann-Liouville”, Bulletin KRASEC. Physical and Mathematical Sciences, 13:2 (2016), 39-45 | MR

[7] Kim V. A., “Duffing oscillator with external harmonic action and variable fractional Riemann-Liouville derivative characterizing viscous friction”, Bulletin KRASEC. Physical and Mathematical Sciences, 13:2 (2016), 46-49 | MR

[8] Kim V. A., Parovik R. I., “Matematicheskaya model' nelinejnogo oscillyatora Duffinga s pamyat'yu.”, Aktual'nye problemy differencial'nyh uravnenij i ih prilozheniya, Materialy Respublikanskoj nauchnoj konferencii s uchastiem zarubezhnyh uchenyh, 2017, 253-254

[9] Kim V.A., Parovik R.I., “Haoticheskie rezhimy oscillyatora Duffinga s proizvodnoj peremennogo drobnogo poryadka Rimana-Liuvillya”, Aktual'nye problemy prikladnoj matematiki, Materialy IV Mezhdunarodnoj nauchnoj konferencii, 2018, 121

[10] Kim V.A., Parovik R.I., “Haoticheskie i regulyarnye rezhimy oscillyatora Duffinga s pamyat'yu”, Aktual'nye zadachi matematicheskogo modelirovaniya i informacionnyh tekhnologij, Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii, 2018, 24-27 | Zbl

[11] Mejlanov R. P., YAnpolov M. S., “Osobennosti fazovoj traektorii fraktal'nogo oscillyatora”, Pis'ma v ZHTF, 28:1 (2002), 67-73

[12] Parovik R. I., “Zadacha Koshi dlya nelokal'nogo uravneniya Mat'e”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 13:2 (2011), 90-98

[13] Parovik R. I., “Matematicheskoe modelirovanie ehreditarnogo oscillyatora”, Komp'yuternye issledovaniya i modelirovanie, 7:5 (2015), 1001-1021

[14] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 135 pp.

[15] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 013107. | DOI | MR | Zbl

[16] Petuhov A. A., Reviznikov D. L., “Algoritmy chislennyh reshenij drobno-differencial'nyh uravnenij”, Vestnik MAI, 16:6 (2009), 228–243

[17] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them, P. I: Theory. P. II: Numerical application”, Meccanica, 15 (1980), 9-30 | DOI

[18] Wolf A. et al., “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, 16:3 (1985), 285-317 | DOI | MR | Zbl

[19] Parovik R. I., “Ob issledovanii ustojchivosti ehreditarnogo oscillyatora Van-der-Polya”, Fundamental'nye issledovaniya, 2016, no. 3-2, 283-287