@article{VKAM_2018_3_a11,
author = {V. A. Kim and R. I. Parovik},
title = {Calculation the maximum {Lyapunov} exponent for the oscillatory system of {Duffing} with a degree memory},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {98--105},
year = {2018},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/}
}
TY - JOUR AU - V. A. Kim AU - R. I. Parovik TI - Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 98 EP - 105 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/ LA - ru ID - VKAM_2018_3_a11 ER -
V. A. Kim; R. I. Parovik. Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 98-105. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a11/
[1] Anishchenko V. S., Vadivasova T. E., Lekcii po nelinejnoj dinamike, Regulyarnaya i haoticheskaya dinamika, Izhevsk, 2011, 516 pp.
[2] Tavazoei M. S., Haeri M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628–2637 | DOI | MR | Zbl
[3] Verisokin A. YU., “Opredelenie pokazatelej Lyapunova na primere modeli Sel'kova v prisutstvii vneshnej periodicheskoj sily”, Uchenye zapiski. EHlektronnyj nauchnyj zhurnal Kurskogo gosudarstvennogo universiteta, 2013, no. 2(26), 18-29 | MR
[4] Duffing G., “Elastizit at und Reibung beim Riementrieb”, Forschung auf dem Gebiet des Ingenieurwesens A, 2:3 (1931), 99–104 | DOI | Zbl
[5] Parovik R. I., “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 61-68
[6] Drobysheva I. V., “Mathematical modeling of nonlinear hereditary oscillators on the example of Duffing oscillator with fractional derivatives in the sense of Riemann-Liouville”, Bulletin KRASEC. Physical and Mathematical Sciences, 13:2 (2016), 39-45 | MR
[7] Kim V. A., “Duffing oscillator with external harmonic action and variable fractional Riemann-Liouville derivative characterizing viscous friction”, Bulletin KRASEC. Physical and Mathematical Sciences, 13:2 (2016), 46-49 | MR
[8] Kim V. A., Parovik R. I., “Matematicheskaya model' nelinejnogo oscillyatora Duffinga s pamyat'yu.”, Aktual'nye problemy differencial'nyh uravnenij i ih prilozheniya, Materialy Respublikanskoj nauchnoj konferencii s uchastiem zarubezhnyh uchenyh, 2017, 253-254
[9] Kim V.A., Parovik R.I., “Haoticheskie rezhimy oscillyatora Duffinga s proizvodnoj peremennogo drobnogo poryadka Rimana-Liuvillya”, Aktual'nye problemy prikladnoj matematiki, Materialy IV Mezhdunarodnoj nauchnoj konferencii, 2018, 121
[10] Kim V.A., Parovik R.I., “Haoticheskie i regulyarnye rezhimy oscillyatora Duffinga s pamyat'yu”, Aktual'nye zadachi matematicheskogo modelirovaniya i informacionnyh tekhnologij, Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii, 2018, 24-27 | Zbl
[11] Mejlanov R. P., YAnpolov M. S., “Osobennosti fazovoj traektorii fraktal'nogo oscillyatora”, Pis'ma v ZHTF, 28:1 (2002), 67-73
[12] Parovik R. I., “Zadacha Koshi dlya nelokal'nogo uravneniya Mat'e”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 13:2 (2011), 90-98
[13] Parovik R. I., “Matematicheskoe modelirovanie ehreditarnogo oscillyatora”, Komp'yuternye issledovaniya i modelirovanie, 7:5 (2015), 1001-1021
[14] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 135 pp.
[15] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 013107. | DOI | MR | Zbl
[16] Petuhov A. A., Reviznikov D. L., “Algoritmy chislennyh reshenij drobno-differencial'nyh uravnenij”, Vestnik MAI, 16:6 (2009), 228–243
[17] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them, P. I: Theory. P. II: Numerical application”, Meccanica, 15 (1980), 9-30 | DOI
[18] Wolf A. et al., “Determining Lyapunov exponents from a time series”, Physica D: Nonlinear Phenomena, 16:3 (1985), 285-317 | DOI | MR | Zbl
[19] Parovik R. I., “Ob issledovanii ustojchivosti ehreditarnogo oscillyatora Van-der-Polya”, Fundamental'nye issledovaniya, 2016, no. 3-2, 283-287