A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 19-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the boundary-value problem with displacement for a model inhomogeneous parabolic-hyperbolic equation of the third order. We prove the uniqueness and existence theorems for a regular solution of the problem under study. In the case when the coefficients of the problem are constant real numbers, the solution of the problem under study is written out in explicit form.
Keywords: mixed type equation, boundary-value problem with displacement, thirdorder equation with multiple characteristics, Tricomi method, method of integral equations.
@article{VKAM_2018_3_a1,
     author = {Zh. A. Balkizov},
     title = {A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {19--26},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a1/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
TI  - A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 19
EP  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a1/
LA  - ru
ID  - VKAM_2018_3_a1
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%T A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 19-26
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a1/
%G ru
%F VKAM_2018_3_a1
Zh. A. Balkizov. A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 19-26. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a1/

[1] Nahushev A.M., Zadachi so smeshcheniem dlya uravnenij v chastnyh proizvodnyh, «Nauka», M., 2006, 287 pp.

[2] Nahushev A.M., “O nekotoryh novyh kraevyh zadachah dlya giperbolicheskih uravnenij i uravnenij smeshannogo tipa”, Differencial'nye uravneniya, 5:1 (1969), 44–59 | MR | Zbl

[3] ZHegalov V.I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeih harakteristikah i s razryvami na perekhodnoj linii”, Uchenye zapiski Kazanskogo gosudarstvennogo universiteta, 122:3 (1962), 3–16 | MR | Zbl

[4] Nahushev A.M., Uravneniya matematicheskoj biologii, «Vysshaya shkola», M., 1995, 301 pp.

[5] Bers L., Matematicheskie voprosy dozvukovoj i okolozvukovoj gazovoj dinamiki, «Inostrannaya literatura», M., 1961, 208 pp.

[6] Frankl' F.I., “Dva gazodinamicheskih prilozheniya kraevoj zadachi Lavrent'eva-Bicadze”, Vestnik LGU. Seriya matematika, mekhanika i astronomiya, 6:11 (1951), 3–7

[7] Repin O.A., Kraevye zadachi so smeshcheniem dlya uravnenij giperbolicheskogo i smeshannogo tipov, Izdatel'stvo Samarskogo filiala Saratovskogo gosudarstvennogo universiteta, Samara, 1992, 161 pp. | MR

[8] Eleev V.A., Kumykova S.K., “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa tret'ego poryadka s kratnymi harakteristikami”, Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN, 2010, no. 5, 5–14

[9] Repin O.A., Kumykova S.K., “Zadacha so smeshcheniem dlya uravneniya tret'ego poryadka s razryvnymi koehfficientami”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya fiziko-matematicheskie nauki, 2012, no. 4(29), 17–25 | DOI

[10] Dzhuraev T.D., Kraevye zadachi dlya uravnenij smeshannogo i smeshanno-sostavnogo tipov, «FAN», Tashkent, 1979, 236 pp.

[11] Tihonov A.N., Samarskij A.A., Uravneniya matematicheskoj fiziki, «Nauka», Moskva, 1977, 736 pp. | MR