Characteristic patterns of electromagnetic manifestation of lithosphere dynamics
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2018), pp. 112-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The signals of the lithosphere dynamics with the seismic activity of Kamchatka are compared. Earlier unknown simple repeating waveforms of the electrical component of the electromagnetic field in ELF-SLF range (patterns) associated with earthquakes were identified. The analysis of the conditions of acoustic and electromagnetic radiation occurrence and lithospheric mechanisms of acoustic-electromagnetic transformation was carried out. Conclusions about the conversion of acoustic radiation into the electromagnetic radiation, character of the lithospheric motions accompanying the simplest waveforms were drawn. These patterns were compared with the simplest forms of deformation movements of a deformed solid.
Keywords: seismoelectromagnetism, electrodynamics of the lithosphere, electromagnetic manifestation of earthquakes, natural electromagnetic field of the Earth, electromagnetic radiation of the lithosphere, electrohydrodynamics.
Mots-clés : propagation of radio waves
@article{VKAM_2018_2_a9,
     author = {V. N. Uvarov},
     title = {Characteristic patterns of electromagnetic manifestation of lithosphere dynamics},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {112--127},
     year = {2018},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_2_a9/}
}
TY  - JOUR
AU  - V. N. Uvarov
TI  - Characteristic patterns of electromagnetic manifestation of lithosphere dynamics
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 112
EP  - 127
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_2_a9/
LA  - ru
ID  - VKAM_2018_2_a9
ER  - 
%0 Journal Article
%A V. N. Uvarov
%T Characteristic patterns of electromagnetic manifestation of lithosphere dynamics
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 112-127
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2018_2_a9/
%G ru
%F VKAM_2018_2_a9
V. N. Uvarov. Characteristic patterns of electromagnetic manifestation of lithosphere dynamics. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2018), pp. 112-127. http://geodesic.mathdoc.fr/item/VKAM_2018_2_a9/

[1] Sadovsky M. A., Electromagnetic Precursors of Earthquakes, Nauka, M., 1982, 145 pp.

[2] Surkov V., Hayakawa M., Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, Japan, 2014, 486 pp.

[3] Krumbholz M., Electromagnetic radiation as a tool to determine actual crustal stress - application and limitation., Dissertation zur Erlagung des Doktorgrades der Mathematisch-Naturwissetschaftlichen Fakultaten der Georg-August-Universitat zu Gottingen, Gottingen, 2010, 151 pp.

[4] Uvarov V. N., “Electromagnetic-deformation waves of the earth's crust”, Geophysical Journal, 38:6 (2016), 180-185

[5] Hayakawa M., Molchanov O. A., “Seismo-electromagnetics as a new field of radiophysics: Electromagnetic phenomena associated with earthquakes”, Radio Sci. Bull., 2007, no. 320, 8–17

[6] Uvarov V. N., “Electromagnetic manifestation of the lithosphere with a VLF-LF range”, Geophysical Journal, 34:6 (2012), 133–146

[7] Krumbholz M., Bock M., Burchardt S., Kelka U., Vollbrecht A., “A critical discussion of the electromagnetic radiation (EMR) method to determine stress orientations within the crust”, Solid Earth, 3 (2012), 401-414 | DOI

[8] Hayakawa M., Earthquake prediction with radio technique, John Wiley, Singapore, 2015, 296 pp.

[9] Mullayarov V. A., Druzhin G. I., Argunov V. V., Abzaletdinova L. M., Melnikov A.,N., “Variations of VLF radio signals and atmospherics during the deep earthquake with M = 8.2 occurred on 24 May 2013 near Kamchatka peninsula”, Natural Science, 6:3(2014) (2014), 43242 | DOI

[10] Druzhin G. I., “Experience in forecasting Kamchatka earthquakes based on observation of electromagnetic VLF radiation”, Volcanology and seismology, 2002, no. 6, 51–62

[11] Molchanov O. A., Low-frequency waves and induced radiation in near-earth plasma, Science, M., 1985, 223 pp.

[12] Gershman B. N.,Erukhimov L. M. , .Yashin Y. Ya., Wave phenomena in ionospheric and cosmic plasma, Science, M., 1984, 392 pp.

[13] Alpert Ya. L. , Guseva E. G., Fligel D. S., Propagation of low-frequency electromagnetic waves in the Earth-ionosphere waveguide, Science, M., 1967, 124 pp.

[14] Dolukhanov M. P., Propagation of radio waves, Communications, M., 1972, 336 pp.

[15] Tarkhova A. G., Electrical Exploration. Handbook of geophysics, Nedra, M., 1980, 518 pp.

[16] Uvarov V. N., Druzhin G. I, Sannikov D. V., “Electromagnetic radiation of lithospheric origin: the method of detection and the first results”, Devices and technics of the experiment, 2010, no. 6, 131–137

[17] Andronov V. V., Zhuravlev V. F., Dry friction in problems of mechanics, 2010, SRC Regular and chaotic dynamics Institute, M.-Izhevsk, 184 pp.

[18] Khasanov M. M., Bulgakova G. T., Nonlinear and nonequilibrium effects in reologicheskie complex environments, Institute of computer science, M.-Izhevsk, 2003, 288 pp.

[19] Sobolev G., Ponomarev A., Earthquake physics and precursors, Nauka, M., 2003, 270 pp.

[20] Rajs Dzh., Mekhanika ochaga zemletryaseniya, Mir, M., 1982, 217 pp.

[21] Aki R.,Ricards P., Quantitative seismology. Theory and methods, Mir, Moscow, 1982

[22] Landau L. D., Lifshitz E. M., Theoretical physics. Field theory, Nauka, M., 1988, 512 pp. | MR

[23] Kocharyan G. G., Kishkina S. B., Novikov V. A., Ostapchuk A. A., “Slow slip events: parameters,conditions of occurrence, and future research prospects”, Geodynamics Tectonophysics, 5:4 (2014), 863–891 | DOI