Numerical solution to parametric identification problems for partial differential equations
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2018), pp. 33-44
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proposes a numerical method for solving the problem, based on the use of the method of lines to reduce the problem to a system of ordinary differential equations with unknown parameters. Next, we use a special representation of the solution of the obtained boundary value problem for a linear system of differential equations with nonlocal conditions, by means of which the problem of parametric identification reduces to solving auxiliary boundary value problems and a system of algebraic equations. It is important to note that, unlike optimization approaches, The construction of any iterative procedures or minimizing sequences is used.
Keywords:
inverse problem, method of lines, parametric identification.
Mots-clés : parabolic type equation
Mots-clés : parabolic type equation
@article{VKAM_2018_2_a3,
author = {V. M. Abdullayev},
title = {Numerical solution to parametric identification problems for partial differential equations},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {33--44},
publisher = {mathdoc},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_2_a3/}
}
TY - JOUR AU - V. M. Abdullayev TI - Numerical solution to parametric identification problems for partial differential equations JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 33 EP - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2018_2_a3/ LA - ru ID - VKAM_2018_2_a3 ER -
V. M. Abdullayev. Numerical solution to parametric identification problems for partial differential equations. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2018), pp. 33-44. http://geodesic.mathdoc.fr/item/VKAM_2018_2_a3/