Numerical analysis of the Cauchy problem for a wide class fractal oscillators
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 93-116
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a wide class of fractal oscillators is considered in the paper and its numerical investigation is carried out using the theory of finite-difference schemes. Fractal oscillators characterize oscillatory processes with power memory or, in general, with heredity, and are described by means of integro-differential equations with difference kernels—memory functions. By choosing memory functions as power functions, integrodifferential equations are reduced to equations with derivatives of fractional orders. In this paper, using the approximation of the fractional derivatives of Gerasimov–Kaputo, a non-local explicit finite-difference scheme was developed, its stability and convergence are justified, estimates of the numerical accuracy of computational accuracy are presented. Examples of the work of the proposed explicit-finite scheme are given. It is shown that the order of computational accuracy tends to unity as the number of grid nodes increases and coincides with the order of approximation of the explicit finite difference scheme.
Keywords: Cauchy problem, fractal oscillators, hereditary, Gerasimov–Caputo operator, numerical scheme, stability, Runge rule, Cauchy problem, fractal oscillators, hereditary, Gerasimov–Caputo operator, numerical scheme, stability, Runge rule.
Mots-clés : convergence, convergence
@article{VKAM_2018_1_a6,
     author = {R. I. Parovik},
     title = {Numerical analysis of the {Cauchy} problem for a wide class fractal oscillators},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {93--116},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Numerical analysis of the Cauchy problem for a wide class fractal oscillators
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 93
EP  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/
LA  - ru
ID  - VKAM_2018_1_a6
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Numerical analysis of the Cauchy problem for a wide class fractal oscillators
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 93-116
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/
%G ru
%F VKAM_2018_1_a6
R. I. Parovik. Numerical analysis of the Cauchy problem for a wide class fractal oscillators. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 93-116. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/

[1] Boltzmann L., “Zur theorie der elastischen nachwirkung”, Annalen der Physik, 241:11 (1878), 430–432 | DOI

[2] Vronskij A. P., “Javlenie posledejstvija v tverdom tele”, AN SSSR. Prikladnaja matematika i mehanika, 5:1 (1941), 31–56

[3] Gerasimov A. N., “Obobshhenie linejnyh zakonov deformacii i ih pri­lozhenie k zadacham vnutrennego trenija”, AN SSSR. Prikladnaja matematika i mehanika, 12 (1948), 529–539

[4] Slonimskij G. L., “O zakone deformacii vysokojelastichnyh polimer­nyh tel”, DAN SSSR, 140 (1961), 343–346

[5] Uchaikin V. V., Fractional derivatives for physicists and engineers, v. I, Background and theory, Springer, Berlin, 2013, 373 pp. | MR

[6] Magin R. L., “Fractional calculus models of complex dynamics in biological tissues”, Computers Mathematics with Applications, 59:5 (2010), 1586-1593 | DOI | MR

[7] Carvalho A. R. M., Pinto C. M. A., “Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection”, Communications in Nonlinear Science and Numerical Simulation, 61 (2018), 104-126 | DOI | MR

[8] Tarasova V.V., Tarasov V.E., “Economic Interpretation of Fractional Derivatives”, Progr. Fract. Differ. Appl, 3:1 (2017), 1-6 | DOI

[9] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp.

[10] Parovik R. I., “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tehnologii, 2017, no. 1, 61-68

[11] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 134 pp.

[12] Volterra V., “Sur les equations integro-differentielles et leurs applica­tions”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR

[13] Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. | MR

[14] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmat­lit, M., 2003, 272 pp.

[15] Kilbas A. A., Srivastava H. M., Trujillo. J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR

[16] Meilanov R. P., Yanpolov M. S., “Features of the Phase Trajectory of a Fractal Oscillator”, Technical Physics Letters, 28:1 (2002), 30-32 | DOI

[17] Parovik R. I., “Matematicheskoe modelirovanie fraktal'nogo oscillja­tora Van der Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarod­noj akademii nauk, 17:2 (2015), 57–62

[18] Lee J. G., Kim S. W., Bae Y. Ch., “Analysis of Nonlinear Behavior in Frac­tional Van der Pol Equation with Periodic External Force and Fractional Differential Equation”, Journal of the KIECS, 11:2 (2016), 191–196

[19] Parovik R. I., “Ob issledovanii ustojchivosti jereditarnogo oscillja­tora Van der Polja”, Fundamental'nye issledovanija, 2016, no. 3-2, 283–287

[20] Butenkov S. A., “Matematicheskie modeli processov na fraktal'nyh strukturah s zadannymi svojstvami na osnove metodov granuljacii”, Izvestija Juzhnogo federal'nogo universiteta. Tehnicheskie nauki, 121:8 (2011), 199–209

[21] Caputo M., Elasticita e dissipazione, Zanichelli, Bologna, 1969, 150 pp.

[22] Parovik R. I., “Sushhestvovanie i edinstvennost' zadachi Koshi dlja shi­rokogo klassa jereditarnyj oscilljatorov”, Mezhdunarodnyj nauchno­-issledovatel'skij zhurnal, 3:10(64) (2017), 112–115

[23] Lorenzo C. F., Hartley T. T., Initialization, Conceptualization, and Ap­plication in the Generalized Fractional Calculus, Lewis Research Center, NASA, Cleveland, Ohio, USA, 1998, 16 pp. | MR

[24] Ramirez L. E. S., Coimbra C. F. M., “On the selection and meaning of vari­able order operators for dynamic modeling”, International Journal of Differential Equations, 2010 (2010), 846107 | DOI | MR

[25] Zajcev V. V., Karlov Ar. V., Nuraev D. B., “Chislennyj analiz avtoko­lebanij aktivnogo fraktal'nogo oscilljatora”, Fizika volnovyh processov i radiotehnicheskie sistemy, 16:2 (2013), 45–48

[26] Karlov A. V., Reguljarnye i haoticheskie kolebanija v drobnyh i dis­kretnyh oscilljatorah, Dis. ... kand. fiz.-mat. nauk: 01.04. 03, Samara, 2016, 176 pp.

[27] Parovik R. I., “About one dynamic system, characterizing free oscillations taking into account the variable heredity”, Proc. International conference on mathematical modelling in applied sciences, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 2017, 297–298

[28] Volkov E. A., Chislennye metody, Nauka, M., 1987, 248 pp. | MR

[29] Xu Y., Erturk V. S., “A finite difference technique for solving variable-order fractional integro-differential equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712 | MR