Mots-clés : convergence, convergence
@article{VKAM_2018_1_a6,
author = {R. I. Parovik},
title = {Numerical analysis of the {Cauchy} problem for a wide class fractal oscillators},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {93--116},
year = {2018},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/}
}
R. I. Parovik. Numerical analysis of the Cauchy problem for a wide class fractal oscillators. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 93-116. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a6/
[1] Boltzmann L., “Zur theorie der elastischen nachwirkung”, Annalen der Physik, 241:11 (1878), 430–432 | DOI
[2] Vronskij A. P., “Javlenie posledejstvija v tverdom tele”, AN SSSR. Prikladnaja matematika i mehanika, 5:1 (1941), 31–56
[3] Gerasimov A. N., “Obobshhenie linejnyh zakonov deformacii i ih prilozhenie k zadacham vnutrennego trenija”, AN SSSR. Prikladnaja matematika i mehanika, 12 (1948), 529–539
[4] Slonimskij G. L., “O zakone deformacii vysokojelastichnyh polimernyh tel”, DAN SSSR, 140 (1961), 343–346
[5] Uchaikin V. V., Fractional derivatives for physicists and engineers, v. I, Background and theory, Springer, Berlin, 2013, 373 pp. | MR
[6] Magin R. L., “Fractional calculus models of complex dynamics in biological tissues”, Computers Mathematics with Applications, 59:5 (2010), 1586-1593 | DOI | MR
[7] Carvalho A. R. M., Pinto C. M. A., “Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection”, Communications in Nonlinear Science and Numerical Simulation, 61 (2018), 104-126 | DOI | MR
[8] Tarasova V.V., Tarasov V.E., “Economic Interpretation of Fractional Derivatives”, Progr. Fract. Differ. Appl, 3:1 (2017), 1-6 | DOI
[9] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp.
[10] Parovik R. I., “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tehnologii, 2017, no. 1, 61-68
[11] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 134 pp.
[12] Volterra V., “Sur les equations integro-differentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR
[13] Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. | MR
[14] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[15] Kilbas A. A., Srivastava H. M., Trujillo. J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR
[16] Meilanov R. P., Yanpolov M. S., “Features of the Phase Trajectory of a Fractal Oscillator”, Technical Physics Letters, 28:1 (2002), 30-32 | DOI
[17] Parovik R. I., “Matematicheskoe modelirovanie fraktal'nogo oscilljatora Van der Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57–62
[18] Lee J. G., Kim S. W., Bae Y. Ch., “Analysis of Nonlinear Behavior in Fractional Van der Pol Equation with Periodic External Force and Fractional Differential Equation”, Journal of the KIECS, 11:2 (2016), 191–196
[19] Parovik R. I., “Ob issledovanii ustojchivosti jereditarnogo oscilljatora Van der Polja”, Fundamental'nye issledovanija, 2016, no. 3-2, 283–287
[20] Butenkov S. A., “Matematicheskie modeli processov na fraktal'nyh strukturah s zadannymi svojstvami na osnove metodov granuljacii”, Izvestija Juzhnogo federal'nogo universiteta. Tehnicheskie nauki, 121:8 (2011), 199–209
[21] Caputo M., Elasticita e dissipazione, Zanichelli, Bologna, 1969, 150 pp.
[22] Parovik R. I., “Sushhestvovanie i edinstvennost' zadachi Koshi dlja shirokogo klassa jereditarnyj oscilljatorov”, Mezhdunarodnyj nauchno-issledovatel'skij zhurnal, 3:10(64) (2017), 112–115
[23] Lorenzo C. F., Hartley T. T., Initialization, Conceptualization, and Application in the Generalized Fractional Calculus, Lewis Research Center, NASA, Cleveland, Ohio, USA, 1998, 16 pp. | MR
[24] Ramirez L. E. S., Coimbra C. F. M., “On the selection and meaning of variable order operators for dynamic modeling”, International Journal of Differential Equations, 2010 (2010), 846107 | DOI | MR
[25] Zajcev V. V., Karlov Ar. V., Nuraev D. B., “Chislennyj analiz avtokolebanij aktivnogo fraktal'nogo oscilljatora”, Fizika volnovyh processov i radiotehnicheskie sistemy, 16:2 (2013), 45–48
[26] Karlov A. V., Reguljarnye i haoticheskie kolebanija v drobnyh i diskretnyh oscilljatorah, Dis. ... kand. fiz.-mat. nauk: 01.04. 03, Samara, 2016, 176 pp.
[27] Parovik R. I., “About one dynamic system, characterizing free oscillations taking into account the variable heredity”, Proc. International conference on mathematical modelling in applied sciences, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 2017, 297–298
[28] Volkov E. A., Chislennye metody, Nauka, M., 1987, 248 pp. | MR
[29] Xu Y., Erturk V. S., “A finite difference technique for solving variable-order fractional integro-differential equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712 | MR