On some new projection theorems and sharp estimates in Herz type spaces in bounded pseudoconvex domains
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove new projection theorems for new Herz type spaces in various domains $C_n$ in the unit disk, unit ball, bounded pseudoconvex domains and based on these results we provide sharp estimates for distances in such type spaces under one condition on Bergman kernel. Similar type result in such type spaces in tubular domains over symmetric cones will be also provided
Keywords: pseudoconvex and tubular domains, the unit ball, projection theorem
Mots-clés : Herz spaces.
@article{VKAM_2018_1_a4,
     author = {R. F. Shamoyan and A. N. Shipka},
     title = {On some new projection theorems and sharp estimates in {Herz} type spaces in bounded pseudoconvex domains},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {64--77},
     year = {2018},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a4/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - A. N. Shipka
TI  - On some new projection theorems and sharp estimates in Herz type spaces in bounded pseudoconvex domains
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 64
EP  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a4/
LA  - en
ID  - VKAM_2018_1_a4
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A A. N. Shipka
%T On some new projection theorems and sharp estimates in Herz type spaces in bounded pseudoconvex domains
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 64-77
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a4/
%G en
%F VKAM_2018_1_a4
R. F. Shamoyan; A. N. Shipka. On some new projection theorems and sharp estimates in Herz type spaces in bounded pseudoconvex domains. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 64-77. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a4/

[1] Bekolle D., Bonami A., Garrigos G., Ricci F., Sehba B., “Hardy-type inequalities and analytic Besov spaces in tube domains over symmetric cones”, J. Reine Angew. Math., 647:25 (2010) | MR

[2] Ortega J., Fabrega J., “Holomorphic Lizorkin-Triebel type spaces”, Journal of Funct. Analysis, 1997, 177-212 | DOI | MR

[3] Rudin W., Function theory in the unit ball, Springer-Verlag, New York, 1980 | MR

[4] Shamoyan F., Djrbashian A., Topics in the theory of $A^p_\alpha$ spaces, Text zur Mathematics, Teubner, Leipzig, 1988 | MR

[5] Bekolle D., Kagou A. T., “Reproducing properties and $L^{p} $ estimates for Bergman projections in Siegel domains of second type”, Studia Math., 115:3 (1995) | DOI | MR

[6] Bekolle D., Bonami A., Garrigos G., Ricci F., Sehba B., “Analytic Besov spaces and symmetric cones”, Jour. Fur seine and ang., 647 (2010), 25-56 | MR

[7] Shamoyan R., Mihic O., “On a distance function in some New analytic Bergman type spaces in higher dimension”, Journal of Function spaces, 2014 (2014) | MR

[8] Shamoyan R., “On some extremal problems in certain harmonic function spaces”, Issues of Analysis, 20:1 (2013), 43-58 | DOI | MR

[9] Zhu K., Spaces of Holomorphic Functions in the unit ball, Springer-Verlag, New York, 2005, 226 pp. | MR

[10] Xu W., “Distances from Bloch functions to some Mobius invariant function spaces in the unit ball of $C^n$”, Journal. of Funct. Spaces and Appl., 7:1 (2009), 91-104 | DOI | MR

[11] Kurilenko S., Shamoyan R., “On Extremal problems in tubular domains”, Issues of Analysis, 3:21 (2013), 44-65 | MR

[12] Ortega J. M., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 233-254 | MR

[13] Shamoyan R. F., Arsenovi'c M., “Some remarks on extremal problems in weighted Bergman spaces of analytic function”, Commun. Korean Math. Soc., 27:4 (2012), 753-762 | DOI | MR

[14] Shamoyan R., Mihic O., “On new estimates for distances in analytic function spaces in higher dimension”, Sib. Elektron. Mat. Izv., 2009, 514-517 | MR

[15] R. Shamoyan and O. Mihic, “On new estimates for distances in analytic function spaces in the unit disk, the polydisk and the unit ball”, Bol. Asoc. Mat. Venez., 17:2 (2010), 89-103 | MR

[16] Duren P., Theory of $H_p$ Spaces, Academic Press, 1970 | MR

[17] Beatrous F., “$L_p$-estimates for extensions of holomorphic function”, Michigan Math. Journal, 32:3 (1985), 361-380 | DOI | MR

[18] Ahern P., Schneider R., “Holomorphic Lipschitz function in pseudoconvex domains”, Amer. Journal of Math., 101:3 (1979), 543-565 | DOI | MR

[19] Kerzman N. and Stein E. M., “The Szego kernel in terms of Cauchy-Fantappie kernels”, Duke Math. J., 43:2 (1978), 197-223. | DOI | MR

[20] Ligocka E., “On the Forelli-Rudin construction and weighted Bergman projection”, Studia Math., 94:3 (1989), 257-272 | DOI | MR

[21] Cohn W. S., “Weighted Bergman projection and tangential area integrals”, Studia Math., 106:1 (1993), 59-76 | DOI | MR

[22] Abate M., Raissy J., Saracco A., “Toeplitz operator and Carleson measures in strongly pseudoconvex domains”, Journal of. Funct. Anal., 263:11 (2012), 3449-3491 | DOI | MR

[23] Arsenovic M., Shamoyan R., “On some sharp estimates for distances in bounded strongly pseudocnvex domains”, Bulletin Korean Math. Society, 1 (2015)