On some new estimates related with Bergman ball and Poisson integral in tubular domain and unit ball
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 48-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce new Herz type analytic spaces based on Bergman balls in tubular domains over symmetric cones and in products of such type domains. We provide for these Herz type spaces new maximal and embedding theorems extending known results in the unit disk. In addition we define new Poisson-type integral in the unit ball and extend a known classical maximal theorem related with it. Related results for such type integrals will be given.
Keywords:
tubular domains over symmetric cones, Herz type spaces, Bergman type integral operators, maximal theorems, embedding theorems, unit ball.
Mots-clés : Poisson-type integral
Mots-clés : Poisson-type integral
@article{VKAM_2018_1_a3,
author = {R. F. Shamoyan and O. Mihi\'c},
title = {On some new estimates related with {Bergman} ball and {Poisson} integral in~tubular domain and unit ball},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {48--63},
publisher = {mathdoc},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a3/}
}
TY - JOUR AU - R. F. Shamoyan AU - O. Mihić TI - On some new estimates related with Bergman ball and Poisson integral in tubular domain and unit ball JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 48 EP - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a3/ LA - en ID - VKAM_2018_1_a3 ER -
%0 Journal Article %A R. F. Shamoyan %A O. Mihić %T On some new estimates related with Bergman ball and Poisson integral in tubular domain and unit ball %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2018 %P 48-63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a3/ %G en %F VKAM_2018_1_a3
R. F. Shamoyan; O. Mihić. On some new estimates related with Bergman ball and Poisson integral in tubular domain and unit ball. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 48-63. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a3/