Some properties of Horn type second order double hypergeometric series
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 32-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Horn [1931, Hypergeometrische Funktionen zweier Veranderlichen, Math. Ann.,105(1), 381-407], (corrections in Borngasser [1933, Uber hypergeometrische funkionen zweier Veranderlichen, Dissertation, Darmstadt], defined and investigated ten second order hypergeometric series of two variables). In the course of further investigation of Horn’s series, we noticed the existence of hypergeometric double series $H^\ast_2$ analogous to Horn’s double series $H^\ast_2$. The principal object of this paper is to present a natural further step toward the mathematical properties and presentations concerning the analogous hypergeometric double series $H^\ast_2$. Indeed, motivated by the important role of the Horn’s functions in several diverse fields of physics and the contributions toward the unification and generalization of the hyper-geometric functions, we establish a system of partial differential equations, integral representations, expansions, analytic continuation, transformation formulas and generating relations. Also, we discuss the links for the various results, which are presented in this paper, with known results.
Keywords: Gauss hypergeometric function, Horn double series, partial differential equations, integral representations, generating functions.
Mots-clés : transformation
@article{VKAM_2018_1_a2,
     author = {A. Hasanov and M. Saad and A. Ryskan},
     title = {Some properties of {Horn} type second order double hypergeometric series},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {32--47},
     year = {2018},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a2/}
}
TY  - JOUR
AU  - A. Hasanov
AU  - M. Saad
AU  - A. Ryskan
TI  - Some properties of Horn type second order double hypergeometric series
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 32
EP  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a2/
LA  - en
ID  - VKAM_2018_1_a2
ER  - 
%0 Journal Article
%A A. Hasanov
%A M. Saad
%A A. Ryskan
%T Some properties of Horn type second order double hypergeometric series
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 32-47
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a2/
%G en
%F VKAM_2018_1_a2
A. Hasanov; M. Saad; A. Ryskan. Some properties of Horn type second order double hypergeometric series. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 32-47. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a2/

[1] Aomoto K., “On the structure of integrals of power products of linear functions”, Sci. Papers, Coll. Gen. Education, Univ. Tokyo, 27 (1977), 49–61 | MR

[2] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite, Gauthier-Villars, Paris, France, 1926

[3] Borngasser L., Uber hypergeometrische funkionen zweier Veranderlichen, Dissertation, Darmstadt, 1933

[4] Choi J., Hasanov A., “Applications of the operator H(a,b) to the Humbert double Hypergeometric functions”, Comput. Math. Appl., 61 (2011), 663-671 | DOI | MR

[5] Carlson B. C., “Appell's function F4 as a double average”, SIAM J. Math. Anal., 6 (1975), 960-965 | DOI | MR

[6] Carlson B. C., “The need of a new classification of double hypergeometric series”, Proc. Amer. Math. Soc., 56 (1976), 221-224 | DOI | MR

[7] Erdelyi A., “Transformations of hypergeometric functions of two variables”, Proc. Roy. Soc. Edinburg Sect. A, 62 (1948), 378-385 | MR

[8] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953

[9] Exton H., Multiple hypergeometric functions and applications, Ellis Horwood Ltd., Chichester, New York, 1976 | MR

[10] Gelfand I. M., Gelfand S. I., “Generalized hypergeometric functions”, Dokl. Akad. Nauk. SSSR, 228 (2) (1986), 279-283 | MR

[11] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions I”, Comp. Math., 64 (1987), 329-352 | MR

[12] Horn J., “Hypergeometrische Funktionen zweier Vernderlichen”, Math. Ann., 105(1) (1931), 381-407 | DOI | MR

[13] Horn J., “Uber die convergenz der hypergeometrischen reihen zweier und dreier Veranderlichen”, Math.Ann., 34 (1889), 544-600 | DOI | MR

[14] Horn J., “Hypergeometrische Funktionen zweier veranderlichen”, Math. Ann., III (1935), 638-677 | DOI | MR

[15] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993 | MR

[16] Srivastava H.M., Choi J., Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht–Boston–London, 2001 | MR

[17] Srivastava, H. M., Karlsson, Per W., Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1985 | MR

[18] Srivastava, H. M., Manocha, H. L., A treatise on generating functions, Halsted Press, New York–Brisbane–Toronto, 1984 | MR