The boundary value problem for the generalized moisture transfer equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 21-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In mathematical modeling of continuous media with memory, we deal with equations that describe a new type of wave motion, something between ordinary wave diffusion and classical wave propagation. There are fractional differential equations, which are the basis for the most mathematical models describing a wide class of physical and chemical processes in the fractal geometry of the Nature. The paper presents a new moisture transfer equation with a fractional Riemann–Liouville derivative that generalize the Aller–Lykov equation. The first boundary value problem for the generalized moisture transfer equation is considered. To prove the uniqueness of a solution we employ the energy inequalities method; an a priori estimate is obtained in terms of the fractional Riemann–Liouville derivative. The existence of the solution for the problem is proved by the Fourier method.
Keywords: Tricomi problem, parabolic-hyperbolic equation, non-characteristic plane, maximum principle, apriori estimate, uniqueness, system of integral equations.
Mots-clés : Fourier transform, existence
@article{VKAM_2018_1_a1,
     author = {S. Kh. Gekkieva and M. A. Kerefov},
     title = {The boundary value problem for the generalized moisture transfer equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {21--31},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a1/}
}
TY  - JOUR
AU  - S. Kh. Gekkieva
AU  - M. A. Kerefov
TI  - The boundary value problem for the generalized moisture transfer equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 21
EP  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a1/
LA  - ru
ID  - VKAM_2018_1_a1
ER  - 
%0 Journal Article
%A S. Kh. Gekkieva
%A M. A. Kerefov
%T The boundary value problem for the generalized moisture transfer equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 21-31
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a1/
%G ru
%F VKAM_2018_1_a1
S. Kh. Gekkieva; M. A. Kerefov. The boundary value problem for the generalized moisture transfer equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 21-31. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a1/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Arhestova S. M., Shhanukov-Lafishev M. H., “Raznostnye shemy dlja uravnenija vlagoperenosa Allera – Lykova s nelokal'nym usloviem”, Izvestija KBNC RAN, 2012, no. 3, 7–16

[3] Lafisheva M. M., Kerefov M. A., Dyshekova R. V., “Raznostnye shemy dlja uravnenija vlagoperenosa Allera – Lykova s nelokal'nym usloviem”, Vladikavkazskij matematicheskij zhurnal, 19:1 (2017), 50–58 | MR

[4] Gekkieva S. H., “Pervaja kraevaja zadach dlja uravnenija vlagoperenosa Allera – Lykova s drobnoj po vremeni proizvodnoj”, Ustojchivoe razvitie: problemy, koncepcii, modeli, Materialy Vserossijskoj konferencii s mezhdunarodnym uchastiem, 2017, 99–102

[5] Kerefov M. A., Gekkieva S. H., “Pervaja kraevaja zadacha dlja neodnorodnogo nelokal'nogo volnovogo uravnenija”, Vestnik Burjatskogo gosudarstvennogo universiteta. Matematika, informatika, 2016, no. 4, 76–86 | MR

[6] Pshu A. V., Uravnenija v chastnyh proizvodnyh drobnogo porjadka, Nauka, M., 2005, 199 pp. | MR

[7] Smirnov V. I., Kurs vysshej matematiki, v. 2, BHV-Peterburg, SPb., 2008, 848 pp. | MR

[8] Dzhrbashjan M. M., Integral'nye preobrazovanija i predstavlenija funkcij v kompleksnoj oblasti, Nauka, M., 1966, 672 pp. | MR