About three-dimensional analogue of the problem of Tricomi with parallel planes of extinction
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 6-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional analogue of the problem of Tricomi with non-characteristic parallel planes of change of types of the equation is investigated for a parabolic-hyperbolic equation. The uniqueness of the solution of the problem is proved by the method of a priori estimates, and the existence of the solution of the problem is enlightened to the existence of a solution of the system of the second type Voltaire integral equation.
Keywords: Tricomi problem, parabolic-hyperbolic equation, non-characteristic plane, maximum principle, apriori estimate, uniqueness, system of integral equations.
Mots-clés : Fourier transform, existence
@article{VKAM_2018_1_a0,
     author = {Yu. P. Apakov},
     title = {About three-dimensional analogue of the problem of {Tricomi} with parallel planes of extinction},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {6--20},
     year = {2018},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_1_a0/}
}
TY  - JOUR
AU  - Yu. P. Apakov
TI  - About three-dimensional analogue of the problem of Tricomi with parallel planes of extinction
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 6
EP  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_1_a0/
LA  - ru
ID  - VKAM_2018_1_a0
ER  - 
%0 Journal Article
%A Yu. P. Apakov
%T About three-dimensional analogue of the problem of Tricomi with parallel planes of extinction
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 6-20
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2018_1_a0/
%G ru
%F VKAM_2018_1_a0
Yu. P. Apakov. About three-dimensional analogue of the problem of Tricomi with parallel planes of extinction. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2018), pp. 6-20. http://geodesic.mathdoc.fr/item/VKAM_2018_1_a0/

[1] Gelfand I.M, “Nekotorye voprosy analiza i differensial'nykh uravneniy”, Uspekhi math. Nauk, 14:3(87) (1956), 3-19

[2] Struchina G. M., “Zadacha o sopryazhenii dvuh uravneniy”, Inzh.-fiz. zkurn., 4:11 (1961), 99-104

[3] Uflyand Ya. S., “K voprosu o rasprostronenii kolebaniy v sostavnyh elektricheskih liniyah”, Inj.-fiz. zhurn., 7:1 (1964), 89-92

[4] Dzhuraev T. D., Sopuev A.,Mamazhanov M. M., Kraeviye zadachi dlya uravneniy parabolo-giperbolicheskogo tipa, Fan, Tashkent, 1986, 220 pp. | MR

[5] Bitsadze A. V., “Ob odnom tryohmernom analoge zadachi Tricomi”, Sibir.math. zhurn., 7:1 (1964), 89-92 | MR

[6] Nakhushev A. M., “Ob odnom tryohmernom analoge zadachi Gellerstedta”, Diff. urav., 4:1 (1968), 52-62

[7] Ejov A. M.,Pulkin S. P., “Otsenka resheniya zadachi Tricomi dlya odnogo klassa uravneniy smeshannogo tipa”, Dokl. AN SSSR, 193:5 (1970), 978-980

[8] Ezhov A. M., “O reshenii prostranstvennoy zadachi dlya uravneniy smeshannogo tipa s dvumya ploskostyami virojdeniya”, Diff. urav. Trudiy pedinstitutov RSFSR, 1973, no. 2, 84-102

[9] Ponamarev S. M., “K teorii kraevih zadach dlya uravneniy smeshannogo tipa v tryohmerniyh oblastyah”, Dokl. AN SSSR, 246:6 (1979), 1303-1306 | MR

[10] Salaxitdinov M. S., Islomov B., “Ob odnom tryohmernom analoge zadachi Tricomi diya uravneniya smeshannogo tipa”, Funksionalniye metodiy v prikladnoy matematike i matematicheskoy fiziki, Tezisi dokl.Vsesoyuz. shkoliy molodiyh uchyoniyh. 11-17 may 1988. V 2-h chast, v. 2, TashGU, Tashkent, 1988, 51-52

[11] Salaxitdinov M. S., Islomov B., “O tryoxmernom analoge zadachi Tricomi diya uravneniya smeshannogo tipa”, Dokl. AN SSSR, 311:4 (1990), 797-801 | MR

[12] Salahitdinov M. S., Islamov B., “Kraeviye zadachi dlya uravneniy smeshannogo elliptiko-giperbolicheskogo tipa v prostranstve”, UzMkh, 1993, no. 3, 13-20

[13] Dzhuraev T. D., Sopuev A., “Ob odnoy prostranstvennoy zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Diff. urav., 17:1 (1981), 50-57 | MR

[14] Сопуев А., “Otsenka resheniya odnoy zadachi Gellerstedta dlya smeshannogo uravneniya parabolo-giperbolicheskogo tipa”, Dokl.AN UzSSR, 1982, no. 7, 3-4 | MR

[15] Dzhuraev T. D., Sopuev A., Apakov Yu. P., “Kraeviye zadachi dlya parabolo-giperbolicheskogo uravneniya s xarakteristicheskoy liniyey izmeneniya tipa”, Uravneniya smeshannogo tipa i so svobodnoy granitsey, Institut matematiki AN UzSSR, Fan, Tashkent, 1987, 56-65 | MR

[16] Dzhuraev T. D., Apakov Yu. P., “Zadachi Tricomi dlya parabolo-giperbolicheskogo uravneniya s neharakteristicheskoy liniyey izmeneniya tipa v tryohmernom prostranstve”, Izvestiya AN UzSSR, Seriya fiz.-mat. Nauk, 1986, no. 3, 21-27

[17] Islomov B., “Ob odnoy tryohmernoy zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Dokl. AN UzSSR, 1989, no. 9, 3-5

[18] Dzhuraev T. D. and Apakov Yu. P., “Gellerstedt's problem for a parabolic-hyperbolic equation in three-dimensional space”, Differential equations, 26:3 (1990), 322-330 | MR

[19] Apakov Yu. P., “A Three - Dimensional Analog of the Tricomi Problem for a Parabolic-Hyperbolic Equation”, Journal of Applied and Industrial Mathematics, 6:1 (2012), 1-11 | MR

[20] Agmon S., Nirenberg L., Protter M. H., “A maximum principal for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Communes Pure and Appl. Math, 4 (1953), 455-470 | DOI | MR

[21] Ilin A. M., Kalashnikov A. S., Oleynik O. A., “Lineyniye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspehi matem.nauk, 17:3 (1962), 21-73

[22] Kruzhkov S. N., Yakubov C., “O razreshimosti odnogo klassa zadach s neizvestnoy granitsey dlya uravneniya teploprovodnosti i povidenii reshenii resheniy pri neogranichennom vozrostanii vremeni”, Dina. splosh. srediy., 1978, no. 36, 46-70

[23] Mihlin S. G., Lineyniye uravneniya matematicheskoy fiziki, Nauka, Moskva, 1964, 368 pp. | MR

[24] Kapilevich M. B., “Ob odnom uravnenii smeshannogo elliptiko-giperbolicheskogo tipa”, Matem. sbornik, 30(72) (1952), 11-38

[25] Trikomi F., Lektsii po uravniniyam v chastniyx proizvodniyx, Inost. liter., Moskva, 1957, 444 pp.