The estimation of cosmic ray component contribution into the total $\beta$- and $\gamma$-background of atmosphere
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2017), pp. 28-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Simulation results of characteristics of atmospheric $\gamma$- and $\beta$-radiation fields, which are produced by primary cosmic rays when overcoming an Earth’s atmospheres, with using Geant4 are presented. Estimates of $\gamma$- and $\beta$-radiation flux density with energies of 50 keV-3 MeV formed in ground atmosphere by cosmic radiation are 33 and 1.5 m$^{-2}$; s$^{-1}$, approximately, that is significantly lower than that formed by soil and atmospheric radionuclides. It was received that the contribution of cosmic component into the total $\gamma$- and $\beta$-background of the ground atmosphere at the heights of about 50 m from the land surface is only about 0.06 % and 1.14 %, respectively. The barometric effect within various ranges of energies of photons and electrons was also investigated in the work.
Mots-clés : simulation, Geant4.
Keywords: cosmic radiation, ionizing radiation, ground atmosphere, pressure, barometric effect
@article{VKAM_2017_4_a1,
     author = {A. S. Zelinskii and V. S. Yakovleva},
     title = {The estimation of cosmic ray component contribution into the total $\beta$- and $\gamma$-background of atmosphere},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {28--34},
     year = {2017},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_4_a1/}
}
TY  - JOUR
AU  - A. S. Zelinskii
AU  - V. S. Yakovleva
TI  - The estimation of cosmic ray component contribution into the total $\beta$- and $\gamma$-background of atmosphere
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 28
EP  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_4_a1/
LA  - ru
ID  - VKAM_2017_4_a1
ER  - 
%0 Journal Article
%A A. S. Zelinskii
%A V. S. Yakovleva
%T The estimation of cosmic ray component contribution into the total $\beta$- and $\gamma$-background of atmosphere
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 28-34
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2017_4_a1/
%G ru
%F VKAM_2017_4_a1
A. S. Zelinskii; V. S. Yakovleva. The estimation of cosmic ray component contribution into the total $\beta$- and $\gamma$-background of atmosphere. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2017), pp. 28-34. http://geodesic.mathdoc.fr/item/VKAM_2017_4_a1/

[1] Adegbulugbe S. K., Issledovanie dinamiki radiatsionnogo fona prizemnoy atmosfery, magisterskaya dis., Tomsk, 2017, 98 pp.

[2] Mitchell A.L., Kouzes R.T., Borgardt J.D., Skyshine Contribution to Gamma Ray Background Between 0 and 4 MeV , Washington, 2009, 27 pp. http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18666.pdf

[3] Balabin Yu.V, Germanenko A.V, Gvozdevskiy B.B, Vashenyuk E.V., “Osobennosti variatsii gamma-izlucheniya vo vremya osadkov”, Physics of Auroral phenomena, 35th annual seminar, KSC RAS, Apatity, 2012, 143–146

[4] Yakovleva V.S., Nagorskiy P.M., Cherepnev M.S., “Formirovanie $\alpha$-, $ \beta$ - i $\gamma$-poley prizemnoy atmosfery prirodnymi atmosfernymi radionuklidami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2014, no. 1(8), 86-96

[5] Yakovleva V. S., Nagorskiy P. M, Yakovlev G. A., “Metod monitoringa plotnosti nevozmushchennogo potoka radona s poverkhnosti grunta”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2016, no. 1(12), 85–93

[6] Yakovleva V. S., Karataev V. D., Zukau V. V., “Modelirovanie atmosfernykh poley $\gamma$- i $\beta$ -izlucheniy, formiruyushchikhsya pochvennymi radionuklidami”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 1(2), 64–73

[7] Yakovleva V. S., Nagorskiy P. M., Zukau V. V., Luzhanchuk Ya. V., “Model' vertikal'nogo raspredeleniya plotnosti plazmy prizemnoy atmosfery”, Izvestiya vuzov. Fizika, 53:11/2 (2010), 86–88

[8] Maurchev E. A., Balabin Yu. V., Vashenyuk E. V., Gvozdevskiy B. B., “Modelirovanie prokhozhdeniya galakticheskikh kosmicheskikh luchey cherez atmosferu”, Nauka i obrazovanie – 2012, mezhdunar. nauch.-tekhn. konf. (Murmansk, 2 - 6 aprelya 2012 g.), 92-96

[9] Geant4 http://geant4.cern.ch

[10] TORII http://portal.tpu.ru/portal/page/portal/torii/achievement

[11] GOST 25645.150-90 Model' izmeneniya potokov chastits, GOSUDARSTVENNYY STANDART SOYuZA SSR LUChI KOSMIChESKIE GALAKTIChESKIE, Izdatel'stvo standartov, M., 1991, 11 pp.

[12] GOST 24631-81 GOSUDARSTVENNYY STANDART SOYuZA SSR ATMOSFERY SPRAVOChNYE PARAMETRY, Izdatel'stvo standartov, M., 1982, 33 pp.

[13] Yadernaya fizika v Internete http://nuclphys.sinp.msu.ru/p/pp268-285.pdf

[14] Yanchukovskiy V. F., Geofizicheskie effekty kosmicheskikh luchey i eksperimental'nye metody ikh issledovaniya, avtoref. dis. d-ra fiz.-mat. nauk, Novosibirsk, 2008, 38 pp.

[15] Nagorskiy P. M., Ippolitov I. I., Smirnov S. V., Yakovleva V. S., Karataev V. D., Vukolov A. V., Zukau V. V., “Osobennosti monitoringa radioaktivnosti v sisteme «litosfera-atmosfera» po $\beta$ - i $\gamma$-izlucheniyam”, Izvestiya VUZov. Fizika, 2010, no. 11