Van der Pol–Duffing oscillator with the effect of hereditary
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 65-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a new mathematical model of the van der Pol oscillator, Duffing with external periodic influence given hereditarity. An algorithm for finding the numerical solution of the original model equation, which is based on the finite-difference scheme. A computer program implementing this algorithm. With this program built waveform and the phase trajectories for hereditarity oscillator Van der Pol–Duffing.
Keywords: Van der Pol–Duffing oscillator, hereditarity, finite-difference scheme, phase trajectories, waveform.
@article{VKAM_2017_2_a5,
     author = {E. R. Novikov{\cyra}},
     title = {Van der {Pol{\textendash}Duffing} oscillator with the effect of hereditary},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {65--75},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/}
}
TY  - JOUR
AU  - E. R. Novikovа
TI  - Van der Pol–Duffing oscillator with the effect of hereditary
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 65
EP  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/
LA  - ru
ID  - VKAM_2017_2_a5
ER  - 
%0 Journal Article
%A E. R. Novikovа
%T Van der Pol–Duffing oscillator with the effect of hereditary
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 65-75
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/
%G ru
%F VKAM_2017_2_a5
E. R. Novikovа. Van der Pol–Duffing oscillator with the effect of hereditary. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 65-75. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/

[1] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.

[2] Volterra V., “Sur les 'equations int'egro-diff'erentiellesetleurs applications”, Acta Mathematica, 35:1 (1912), 295-356 | MR | Zbl

[3] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[4] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl

[5] Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.

[6] Novikova E. R., “Matematicheskaja model' jereditarnogo oscilljatora Van-der-Polja-Duffinga”, Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, no. 2

[7] Parovik R. I., “Matematicheskaja model' fraktal'nogo oscilljatora Van der Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62

[8] Parovik R. I. Matematicheskoe modelirovanie nelokal'noj kolebatel'noj sistemy Duffinga s fraktal'nym treniem, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2015, no. 1(10), 18-24

[9] Drobysheva I. V., “Matematicheskoe modelirovanie nelinejnyh jereditarnyh oscilljatorov na primere oscilljatora Duffinga s drobnymi proizvodnymi v smysle Rimana-Liuvillja”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 2(13), 43-49 | MR

[10] Kim V. A., “Oscilljator Duffinga s vneshnim garmonicheskim vozdejstviem i proizvodnoj peremennogo drobnogo porjadka Rimana-Liuvillja, harakterizujushhaja vjazkoe trenie”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 2(13), 50-54

[11] Parovik R. I., “Matematicheskaja model' fraktal'nogo oscilljatora Van-der-Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62

[12] Parovik R. I., “Ob issledovanii ustojchivosti jereditarnogo oscilljatora Van der Polja”, Fundamental'nye issledovanija, 2016, no. 3-2, 283-287

[13] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429-435 | DOI

[14] Parovik R. I., “Konechno-raznostnye shemy dlja fraktal'nogo oscilljatora s peremennymi drobnymi porjadkami”, Vestnik KRAUNC. Fiziko-matematicheskij, 2015, no. 2(11), 88-85

[15] Parovik R. I., “O chislennom reshenii uravnenija fraktal'nogo oscilljatora s proizvodnoj drobnogo peremennogo porjadka ot vremeni”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2014, no. 1(8), 60-65