@article{VKAM_2017_2_a5,
author = {E. R. Novikov{\cyra}},
title = {Van der {Pol{\textendash}Duffing} oscillator with the effect of hereditary},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {65--75},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/}
}
E. R. Novikovа. Van der Pol–Duffing oscillator with the effect of hereditary. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 65-75. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a5/
[1] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.
[2] Volterra V., “Sur les 'equations int'egro-diff'erentiellesetleurs applications”, Acta Mathematica, 35:1 (1912), 295-356 | MR | Zbl
[3] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[4] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl
[5] Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.
[6] Novikova E. R., “Matematicheskaja model' jereditarnogo oscilljatora Van-der-Polja-Duffinga”, Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, no. 2
[7] Parovik R. I., “Matematicheskaja model' fraktal'nogo oscilljatora Van der Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62
[8] Parovik R. I. Matematicheskoe modelirovanie nelokal'noj kolebatel'noj sistemy Duffinga s fraktal'nym treniem, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2015, no. 1(10), 18-24
[9] Drobysheva I. V., “Matematicheskoe modelirovanie nelinejnyh jereditarnyh oscilljatorov na primere oscilljatora Duffinga s drobnymi proizvodnymi v smysle Rimana-Liuvillja”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 2(13), 43-49 | MR
[10] Kim V. A., “Oscilljator Duffinga s vneshnim garmonicheskim vozdejstviem i proizvodnoj peremennogo drobnogo porjadka Rimana-Liuvillja, harakterizujushhaja vjazkoe trenie”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 2(13), 50-54
[11] Parovik R. I., “Matematicheskaja model' fraktal'nogo oscilljatora Van-der-Polja”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62
[12] Parovik R. I., “Ob issledovanii ustojchivosti jereditarnogo oscilljatora Van der Polja”, Fundamental'nye issledovanija, 2016, no. 3-2, 283-287
[13] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429-435 | DOI
[14] Parovik R. I., “Konechno-raznostnye shemy dlja fraktal'nogo oscilljatora s peremennymi drobnymi porjadkami”, Vestnik KRAUNC. Fiziko-matematicheskij, 2015, no. 2(11), 88-85
[15] Parovik R. I., “O chislennom reshenii uravnenija fraktal'nogo oscilljatora s proizvodnoj drobnogo peremennogo porjadka ot vremeni”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2014, no. 1(8), 60-65