Keywords: Newton’s method, the derivative of a fractional order.
@article{VKAM_2017_2_a4,
author = {S. V. Myshkin},
title = {On one model integral-differential {Bernull} equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {59--64},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/}
}
S. V. Myshkin. On one model integral-differential Bernull equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 59-64. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/
[1] Volterra V., “Sur les 'equations int'egro-diff'erentielles et leurs applications”, Acta Mathematica, 35:1. (1912), 295-356
[2] Nahushev A. M., Drobnoe ischislenie i ego prilozhenija, Fizmatlit, Moskva, 2003, 272 pp.
[3] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp.
[4] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011, 505 pp.
[5] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.
[6] Tarasova V. V., Tarasov V. E., “Elasticity for economic processes with memory: Fractional differential calculus approach”, Fractional Differential Calculus, 6:2 (2016), 219–232
[7] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S6 (2016)
[8] Samuta V. V., Strelova V. A., Parovik R. I., “Nelokal'naja model' neoklassicheskogo jekonomicheskogo rosta Colou”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 5:2 (2012), 37-41
[9] Tverdyj D. A., “Uravnenie Rikkati s peremennoj jereditarnost'ju”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2017, no. 1(17), 44-53.
[10] Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.
[11] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Applications and Applied Mathematics, 7:2 (2012), 595-608
[12] Parovik R. I., “O chislennom reshenii uravnenija fraktal'nogo oscilljatora s proizvodnoj drobnogo peremennogo porjadka ot vremeni”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2014, no. 1 (8), 60-65
[13] Parovik R. I., “Konechno-raznostnye shemy dlja fraktal'nogo oscilljatora s peremennymi drobnymi porjadkami”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2015, no. 2 (11), 88-95