On one model integral-differential Bernull equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 59-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model integro-differential Bernlulli equation is considered in the paper. This equation was reduced to a differential equation with derivatives of fractional orders and solved numerically with the help of Newton’s iteration method. Depending on the values of the control parameters, calculated curves were constructed.
Mots-clés : Bernoulli equations
Keywords: Newton’s method, the derivative of a fractional order.
@article{VKAM_2017_2_a4,
     author = {S. V. Myshkin},
     title = {On one model integral-differential {Bernull} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {59--64},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/}
}
TY  - JOUR
AU  - S. V. Myshkin
TI  - On one model integral-differential Bernull equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 59
EP  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/
LA  - ru
ID  - VKAM_2017_2_a4
ER  - 
%0 Journal Article
%A S. V. Myshkin
%T On one model integral-differential Bernull equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 59-64
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/
%G ru
%F VKAM_2017_2_a4
S. V. Myshkin. On one model integral-differential Bernull equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 59-64. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a4/

[1] Volterra V., “Sur les 'equations int'egro-diff'erentielles et leurs applications”, Acta Mathematica, 35:1. (1912), 295-356

[2] Nahushev A. M., Drobnoe ischislenie i ego prilozhenija, Fizmatlit, Moskva, 2003, 272 pp.

[3] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp.

[4] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011, 505 pp.

[5] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.

[6] Tarasova V. V., Tarasov V. E., “Elasticity for economic processes with memory: Fractional differential calculus approach”, Fractional Differential Calculus, 6:2 (2016), 219–232

[7] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S6 (2016)

[8] Samuta V. V., Strelova V. A., Parovik R. I., “Nelokal'naja model' neoklassicheskogo jekonomicheskogo rosta Colou”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 5:2 (2012), 37-41

[9] Tverdyj D. A., “Uravnenie Rikkati s peremennoj jereditarnost'ju”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2017, no. 1(17), 44-53.

[10] Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.

[11] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Applications and Applied Mathematics, 7:2 (2012), 595-608

[12] Parovik R. I., “O chislennom reshenii uravnenija fraktal'nogo oscilljatora s proizvodnoj drobnogo peremennogo porjadka ot vremeni”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2014, no. 1 (8), 60-65

[13] Parovik R. I., “Konechno-raznostnye shemy dlja fraktal'nogo oscilljatora s peremennymi drobnymi porjadkami”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2015, no. 2 (11), 88-95