@article{VKAM_2017_2_a2,
author = {M. Nadjafikhah and S. Hejazi},
title = {Symmetry classification of newtonian incompressiblefluid{\textquoteright}s equations flow in turbulent boundary layers},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {41--52},
year = {2017},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/}
}
TY - JOUR AU - M. Nadjafikhah AU - S. Hejazi TI - Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2017 SP - 41 EP - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/ LA - en ID - VKAM_2017_2_a2 ER -
M. Nadjafikhah; S. Hejazi. Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 41-52. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/
[1] Zwillinger D., Handbook of Differential Equations, 3rd ed., Academic Press, Boston, 1997, 132 pp. | MR
[2] Demetriou E., Ivanova N. M., Sophocleous C., “Group analysis of (2+1)- and (3+1)-dimensional diffusion-convection equations”, J. Math. Appl, 2008, no. 348, 55-65 | MR | Zbl
[3] Azad H., Mustafa M. T., “Symmetry analysis of wave equation on sphere”, J. Math. Appl., 2007, no. 333, 1180-1188 | MR | Zbl
[4] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl
[5] Nadjafikhah M., Hejazi S. R., “Symmetry analysis of cylindrical Laplace equation”, Balkan journal of geometry and applications, 2009 | MR
[6] Leach P. G. L., “Symmetry and singularity properties of the generalised Kummer-Schwartz and related equations”, J. Math. Appl., 2008, no. 348, 467-493 | MR
[7] Mahapatra T. R., Gupta A. S., “Heat transfer in stagnation-point flow towards a stretching sheet”, J. Heat Mass Transfer, 38 (2002), 517–521 | DOI
[8] Olver P. J., Equivalence, Invariant and Symmetry, Cambridge University Press, Cambridge, 1995 | MR
[9] Olver P. J., Applications of Lie Groups to Differential equations, Second Edition, GTM, v. 107, Springer, Verlage-New York, 1993 | MR | Zbl
[10] Changzheng Q., Huang Q., “Symmetry reduction and exact solution of the affine heat equation”, J. Math. Appl., 2008, no. 346, 521-530 | MR | Zbl
[11] Cimpoiasu R., Constantinescu R., “Lie symmetries and invariants for a 2D nonlinear heat equation”, Nonlinear analysis, 2008, no. 68, 2261-1168 | DOI | MR