Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 41-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lie group method is applicable to both linear and non-linear partial differential equations, which leads to find new solutions for partial differential equations. Lie symmetry group method is applied to study Newtonian incompressible fluid’s equations flow in turbulent boundary layers. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra such as Levi decomposition, radical subalgebra, solvability and simplicity of symmetries is given.
Keywords: Fluid mechanics, Lie symmetry, Partial differential equation, Shear stress, Optimal system.
@article{VKAM_2017_2_a2,
     author = {M. Nadjafikhah and S. Hejazi},
     title = {Symmetry classification of newtonian incompressiblefluid{\textquoteright}s equations flow in turbulent boundary layers},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {41--52},
     year = {2017},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/}
}
TY  - JOUR
AU  - M. Nadjafikhah
AU  - S. Hejazi
TI  - Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 41
EP  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/
LA  - en
ID  - VKAM_2017_2_a2
ER  - 
%0 Journal Article
%A M. Nadjafikhah
%A S. Hejazi
%T Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 41-52
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/
%G en
%F VKAM_2017_2_a2
M. Nadjafikhah; S. Hejazi. Symmetry classification of newtonian incompressiblefluid’s equations flow in turbulent boundary layers. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2017), pp. 41-52. http://geodesic.mathdoc.fr/item/VKAM_2017_2_a2/

[1] Zwillinger D., Handbook of Differential Equations, 3rd ed., Academic Press, Boston, 1997, 132 pp. | MR

[2] Demetriou E., Ivanova N. M., Sophocleous C., “Group analysis of (2+1)- and (3+1)-dimensional diffusion-convection equations”, J. Math. Appl, 2008, no. 348, 55-65 | MR | Zbl

[3] Azad H., Mustafa M. T., “Symmetry analysis of wave equation on sphere”, J. Math. Appl., 2007, no. 333, 1180-1188 | MR | Zbl

[4] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl

[5] Nadjafikhah M., Hejazi S. R., “Symmetry analysis of cylindrical Laplace equation”, Balkan journal of geometry and applications, 2009 | MR

[6] Leach P. G. L., “Symmetry and singularity properties of the generalised Kummer-Schwartz and related equations”, J. Math. Appl., 2008, no. 348, 467-493 | MR

[7] Mahapatra T. R., Gupta A. S., “Heat transfer in stagnation-point flow towards a stretching sheet”, J. Heat Mass Transfer, 38 (2002), 517–521 | DOI

[8] Olver P. J., Equivalence, Invariant and Symmetry, Cambridge University Press, Cambridge, 1995 | MR

[9] Olver P. J., Applications of Lie Groups to Differential equations, Second Edition, GTM, v. 107, Springer, Verlage-New York, 1993 | MR | Zbl

[10] Changzheng Q., Huang Q., “Symmetry reduction and exact solution of the affine heat equation”, J. Math. Appl., 2008, no. 346, 521-530 | MR | Zbl

[11] Cimpoiasu R., Constantinescu R., “Lie symmetries and invariants for a 2D nonlinear heat equation”, Nonlinear analysis, 2008, no. 68, 2261-1168 | DOI | MR