The Riccati equation with variable heredity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 44-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Riccati differential equation with a fractional derivative of variable order. The introduction of a derivative of a fractional variable order into the initial equation determines the property of the medium - the memory effect or the heredity, which consists in the dependence of the current state of the dynamic system on its previous states.
Mots-clés : Riccati equation
Keywords: fractional derivative, hereditarity, numerical methods, differential equation.
@article{VKAM_2017_1_a4,
     author = {D. A. Tvyordyj},
     title = {The {Riccati} equation with variable heredity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {44--53},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_1_a4/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
TI  - The Riccati equation with variable heredity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 44
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_1_a4/
LA  - ru
ID  - VKAM_2017_1_a4
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%T The Riccati equation with variable heredity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 44-53
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2017_1_a4/
%G ru
%F VKAM_2017_1_a4
D. A. Tvyordyj. The Riccati equation with variable heredity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 44-53. http://geodesic.mathdoc.fr/item/VKAM_2017_1_a4/

[1] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.

[2] Petras I., Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science Business Media, 2011, 218 pp. | MR | Zbl

[3] Volterra V., “Sur les 'equations int'egro-diff'erentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR | Zbl

[4] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, 2003, 272 pp.

[5] Riccati J., “Animadversiones in aequationes differentiales secundi gradus”, Actorum Eruditorum Supplementa, 8 (1724), 66–73

[6] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Applications and Applied Mathematics, 7:2 (2012), 595–608 | MR | Zbl

[7] Feder E., Fraktaly, Mir, Moscow, 1991, 254 pp. | MR

[8] Parovik R.I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU imeni Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.

[9] Parovik R.I., “Finite-difference schemes for fractal oscillator with a variable fractional order”, Bulletin KRASEC. Physical and Mathematical Sciences, 11:2 (2015), 85-92

[10] Berezin I. S., Zhidkov N. P., Metody vychislenij, Fizmatlit, Moskva, 1962 | MR

[11] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S6 (2016) | Zbl

[12] Tvjordyj D.A., “Uravnenie Rikkati s proizvodnoj drobnogo peremennogo porjadka”, Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, no. 2, 42-42