@article{VKAM_2017_1_a3,
author = {O. D. Lipko},
title = {Mathematical model of propagation of nerve impulses with regard hereditarity},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {33--43},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2017_1_a3/}
}
O. D. Lipko. Mathematical model of propagation of nerve impulses with regard hereditarity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 33-43. http://geodesic.mathdoc.fr/item/VKAM_2017_1_a3/
[1] Volterra V., “Sur les 'equations int'egro-diff'erentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR | Zbl
[2] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'janovsk, 2008, 512 pp.
[3] Parovik R. I., Matematicheskoe modelirovanie linejnyh jereditarnyh oscilljatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2015, 178 pp.
[4] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Beijing and Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl
[5] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1 (1961), 446–446 | DOI
[6] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (1962), 2061–2070 | DOI
[7] Lipko O. D., “Ereditarnoe modelnoe uravnenie FittsKhyu-Nagumo”, Mezhdunarodnyi studencheskii nauchnyi vestnik, 2017, no. 2, 43-43
[8] Parovik R.I., “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Bulletin KRASEC. Physical and Mathematical Sciences, 10:1 (2015), 16-21
[9] Parovik R. I., “Ob issledovanii ustojchivosti jereditarnogo oscilljatora Van der Polja”, Fundamental'nye issledovanija, 2016, no. 3(2), 283–287
[10] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429–435 | DOI
[11] Parovik R.I., “Finite-difference schemes for fractal oscillator with a variable fractional order”, Bulletin KRASEC. Physical and Mathematical Sciences, 11:2 (2015), 85-92