About a problem for the degenerating mixed type equation fractional derivative
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and the uniqueness of solution of local problem for degenerating mixed type equation is investigated. Considering parabolic-hyperbolic equation involve the Caputo fractional derivative. The uniqueness of solution is proved using the method of the extremume principle and integral energy, the existence is proved by the method of integral equations.
Keywords: boundary value problem, degenerating equation, parabolic-hyperbolic type, Gauss hypergeometric function, Cauchy problem, existence and uniqueness of solution, a principle an extremum, method of integral equations, Caputo fractional derivative.
@article{VKAM_2017_1_a2,
     author = {B. Islomov and N. K. Ochilova},
     title = {About a problem for the degenerating mixed type equation fractional derivative},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {22--32},
     year = {2017},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_1_a2/}
}
TY  - JOUR
AU  - B. Islomov
AU  - N. K. Ochilova
TI  - About a problem for the degenerating mixed type equation fractional derivative
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 22
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_1_a2/
LA  - en
ID  - VKAM_2017_1_a2
ER  - 
%0 Journal Article
%A B. Islomov
%A N. K. Ochilova
%T About a problem for the degenerating mixed type equation fractional derivative
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 22-32
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2017_1_a2/
%G en
%F VKAM_2017_1_a2
B. Islomov; N. K. Ochilova. About a problem for the degenerating mixed type equation fractional derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 22-32. http://geodesic.mathdoc.fr/item/VKAM_2017_1_a2/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Amsterdam, 2006 | MR | Zbl

[2] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993 | MR | Zbl

[3] Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999 | MR | Zbl

[4] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, 1993 | MR

[5] Marichev O. I., Kilbas A. A., Repin A. A., Boundary value problems for partial differential equations with discounting coefficients, Izdat. Samar. Gos.Ekonom. Univ., Samara, 2008 (In Russian)

[6] Repin O. A., Boundary value problems with shift for equations of hyperbolic and mixed type, Saratov Univ., Saratov, 1992 (In Russian) | MR

[7] Abdullaev O. Kh., “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, International journal of differential equations, 2016, 9815796 | MR

[8] Kilbas A. A. and Repin O. A., “An analog of the Bitsadze-Samarskii problem for a mixed type equation with a fractional derivative”, Differential equations, 39:5 (2003), 674–680 | DOI | MR | Zbl

[9] Kilbas A. A., Repin O. A., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fractional Calculus Applied Analysis, 13:1 (2010), 69–84 | MR | Zbl

[10] Pskhu A. V., Partial differential equation of fractional order, Nauka, M., 2005, 200 pp. (In Russian) | MR

[11] Ochilova N. K., “Study the unique solvability of boundary value problem of Frankl for mixed-type equation degenerate on the boundary and within the region”, Vestnik KRAUNC. Fiz.-Mat. Nauki - Bulletin KRASEC. Phys. Math. Sci., 2014, no. 1(8), 20-32

[12] Smirnov M. M., Mixed type equations, Nauka, M., 2000 | MR

[13] Pskhu A. V., “Solution of boundary value problems fractional diffusion equation by the Green function method”, Differential equation, 39 (2003), 1509-1513 | DOI | MR | Zbl