The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work the problems of correctness of a linear inverse problem for the mixed type equation of the second kind of the second order in three-dimensional space are considered. For this problem, the theorems on existence and uniqueness of the solution are proved in certain class by «$\varepsilon$-regularization» method, Galerkin's and of successive approximations methods.
Keywords: a linear inverse problem, correctness of solution, Galerkin's method, «$\varepsilon$-regularization» method, method of successive approximations.
@article{VKAM_2017_1_a0,
     author = {S. Z. Djamalov},
     title = {The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--13},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2017_1_a0/}
}
TY  - JOUR
AU  - S. Z. Djamalov
TI  - The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2017
SP  - 7
EP  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2017_1_a0/
LA  - ru
ID  - VKAM_2017_1_a0
ER  - 
%0 Journal Article
%A S. Z. Djamalov
%T The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2017
%P 7-13
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2017_1_a0/
%G ru
%F VKAM_2017_1_a0
S. Z. Djamalov. The linear inverse problem for the mixed type equation of the second kind of the second order with nonlocal boundary conditions in three-dimensional space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2017), pp. 7-13. http://geodesic.mathdoc.fr/item/VKAM_2017_1_a0/

[1] Anikonov Ju. E., Nekotorye metody issledovanija mnogomernyh obratnyh zadach dlja differencial'nyh uravnenij, Nauka, Novosibirsk, 1978, 120 pp. | MR

[2] Bubnov B. A., K voprosu o razreshimosti mnogomernyh obratnyh zadach dlja parabolicheskih i giperbolicheskih uravnenij, Preprinty No 713,714, VC. SO AN SSSR, Novosibirsk, 1987, 44 pp. | MR

[3] Vragov V. N., Kraevye zadachi dlja neklassicheskih uravnenij matematicheskoj fiziki, NGU, Novosibirsk, 1983, 84 pp. | MR

[4] Dzhamalov S. Z., “Ob odnoj nelokal'noj kraevoj zadachi dlja uravnenija smeshannogo tipa vtorogo roda vtorogo porjadka”, Uzbekskij matematicheskij zhurnal, 2014, no. 1, 5-14 | MR

[5] Djamalov S. Z., “On the correctness of a nonlocal problem for the second order mixed type equation of the second kind in a rectangle”, IIUM Engineering Journal, 17:2 (2016), 95-104

[6] Djamalov S.Z., “The linear inverse problem for the equation of Trikomi in three-dimensional space”, Vestnik KRAUNTS. Phiz. mat. nauki, 13:2 (2016), 12-17 | MR

[7] Dzhenaliev M. T., K teorii kraevyh zadach dlja nagruzhennyh differencial'nyh uravnenij, Institut teoreticheskoj i prikladnoj matematiki, Almaty, 1995

[8] Kozhanov A. I., “Nelinejnye nagruzhennye uravnenija i obratnye zadachi”, Zhurn. vychislit. matematiki i mat. fiziki, 44:4 (2004), 694-716 | MR | Zbl

[9] Kozhanov A. I., “Ob odnom nelinejnom nagruzhennom parabolicheskom uravnenij i o svjazannoj s nim obratnoj zadache”, Mat.zametki, 76:6 (2004), 840-853 | DOI | Zbl

[10] Sabitov K. B, Safin Je. M., “Obratnaja zadacha dlja uravnenija parabolo-giperbolicheskogo tipa v prjamougol'noj oblasti”, Dokl. RAN, 429:4 (2009), 451-454 | Zbl

[11] Sabitov K. B., Martem'janova N. V., “Nelokal'naja obratnaja zadacha dlja uravnenija smeshannogo tipa”, Izv. vuzov. Matematika, 2011, no. 2, 71-85 | Zbl

[12] Lavrent'ev M. M, Romanov V. G, Vasil'ev V. G., Mnogomernye obratnye zadachi dlja differencial'nyh uravnenij, Nauka, Novosibirsk, 1969, 67 pp. | MR

[13] Ladyzhenskaja O. A., Kraevye zadachi matematicheskoj fiziki, Nauka, M., 1973 | MR

[14] Najmark M. A., Linejnye differencial'nye operatory, Nauka, M., 1969 | MR