A priori evaluation of the task of Cattabriga for the generalized third-order equation with multiple characteristics
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 66-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of energy inequalities obtained a priori estimate of the solution of the problem of Cattabriga for the equation with multiple characteristics.
Keywords: Caputo Fractional derivative, a priori estimate of the boundary-value problems, equations with multiple characteristics, method of energy integrals.
@article{VKAM_2016_5_a9,
     author = {A. M. Shkhagapsoev},
     title = {A priori evaluation of the task of {Cattabriga} for the generalized third-order equation with multiple characteristics},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {66--71},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a9/}
}
TY  - JOUR
AU  - A. M. Shkhagapsoev
TI  - A priori evaluation of the task of Cattabriga for the generalized third-order equation with multiple characteristics
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 66
EP  - 71
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a9/
LA  - ru
ID  - VKAM_2016_5_a9
ER  - 
%0 Journal Article
%A A. M. Shkhagapsoev
%T A priori evaluation of the task of Cattabriga for the generalized third-order equation with multiple characteristics
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 66-71
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a9/
%G ru
%F VKAM_2016_5_a9
A. M. Shkhagapsoev. A priori evaluation of the task of Cattabriga for the generalized third-order equation with multiple characteristics. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 66-71. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a9/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Moskva, Fizmatlit, 2003, 272 pp.

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo porjadka i nekotorye ih prilozhenija, Nauka i tehnika, Minsk, 1987, 668 pp. | MR

[3] Block H., “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron. fys, 7:13 (1912), 1–34

[4] Del Vecchio E., “Sulle equazioni Zxxx—Zy+phi1(x,y)=0, Zxxx—Zyy+phi1(x,y)=0”, Mem. Real acad. cienc. Torino, 66:2 (1915), 1–41 | Zbl

[5] Del Vecchio E., “Sulle deux problems d'integration pour las equazions paraboliques Zxxx—Zy=0, Zxxx—Zyy=0”, Ark. mat., astron. fys., 11 (1916), 32–34

[6] Cattabriga L., “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat, 3:2 (1959), 163–169 | MR

[7] Cattabriga L., “Potenzialli di linia edi domino per equation nom paraboliche in olue variabli a caracteristiche multiple”, Rendi del Som. Mat. della Univ. di Padova, 3 (1961), 1–45 | MR

[8] Abdinazarov S., “O fundamental'nyh reshenijah linejnyh uravnenij s kratnymi harakteristikami vysokogo porjadka”, Izvestie AN UzSSR, serija fiz. mat. nauk., 1989, no. 3, 3 – 15 | MR

[9] Dzhuraev T. D., “K teorii uravnenij nechetnogo porjadka s kratnymi harakteristikami”, Uzb. mat. zhur., 1991, no. 1, 21 – 31

[10] Irgashev Ju., Kraevye zadachi dlja differencial'nyh uravnenij i ih prilozhenija, FAN, Tashkent, 1976

[11] Abdinazarov S., Sobirov Z. A., “O fundamental'nyh reshenijah uravnenija s kratnymi harakteristikami tret'ego porjadka v mnogomernom prostranstve”, Differencial’nye uravnenija s chastnymi proizvodnymi i rodstvennye problemy analiza i informatiki, Trudy mezhd. nauchn. konf., Tashkent, 2004, 12– 13

[12] Abdinazarov S., “Reshenie zadachi koshi dlja vyrozhdajushhihsja uravnenij vysokogo nechetnogo porjadka s kratnymi harakteristikami v mnogomernom prostranstve”, Uzbek Mathematical Journal, 2005, no. 3, 11 – 16

[13] Dzhuraev T. D., Kraevye zadachi dlja uravnenij smeshannogo i smeshanno-sostovnogo tipov, FAN, Tashkent, 1979, 236 pp. | MR

[14] Caputo M., Elasticita e Dissipazione, Bologna, 1969

[15] Alihanov A. A., “Apriornye ocenki reshenij kraevyh zadach dlja uravnenij drobnogo porjadka”, Differenc. uravnenija, 46:5 (2010), 658 – 664 pp. | MR