On mathematical models of the Aller equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 56-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution to the Goursat problem is written out explicitly for a hyperbolic secondorder loaded equation, proposed as a mathematical model of Aller equation under certain conditions.
Mots-clés : задача Гурса
Keywords: equation mathematic model, loaded equation
Mots-clés : Aller equation, Goursat problem.
@article{VKAM_2016_5_a8,
     author = {K. U. Khubiev},
     title = {On mathematical models of the {Aller} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {56--65},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a8/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - On mathematical models of the Aller equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 56
EP  - 65
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a8/
LA  - ru
ID  - VKAM_2016_5_a8
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T On mathematical models of the Aller equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 56-65
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a8/
%G ru
%F VKAM_2016_5_a8
K. U. Khubiev. On mathematical models of the Aller equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 56-65. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a8/

[1] Nakhushev A. M., Uravneniya matematicheskoy biologii, Vyssh. shk., M., 1995, 301 pp.

[2] Jangarber V. A., “Setochnaja shema dlja reshenija modificirovannogo uravnenija vlagoperenosa”, Dokl. VASHNIL, 8 (1966), 46–48

[3] Vodakhova V. A., “Kraevaya zadacha s nelokal'nym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differents. uravneniya, 18:2 (1982), 280–285 | MR | Zbl

[4] Shkhanukov M. X., “O nekotorykh kraevykh zadachakh dlya uravneniya tret'ego poryadka, voznikayushchikh pri modelirovanii fil'tratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR

[5] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A.A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–551

[6] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tret'ego poryadka”, Izvestiya Vuzov. Matematika, 1999, no. 10(449), 73–76 | MR | Zbl

[7] Kozhanov A. I., “Ob odnoy nelokal'noy kraevoy zadache s peremennymi koeffitsientami dlya uravneniy teploprovodnosti i Allera”, Differents. uravneniya, 40:6 (2004), 769–774 | MR

[8] Kozhanov A. I., Popov N. S., “O razreshimosti nekotorykh zadach so smeshcheniem dlya psevdoparabolicheskikh uravneniy”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 10:3 (2010), 46–62 | Zbl

[9] Makaova R. Kh., “Ob odnoy kraevoy zadache dlya obobshchennogo uravneniya Allera”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 14:3 (2012), 19–23

[10] Makaova R. Kh., “Vtoraya kraevaya zadacha dlya obobshchennogo uravneniya Allera s drobnoy proizvodnoy Rimana-Liuvillya”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 17:3 (2015), 35–38

[11] Nakhushev A. M., “Nelokal'naya zadacha i zadacha Gursa dlya nagruzhennogo uravneniya giperbolicheskogo tipa i ikh prilozheniya k prognozu pochvennoy vlagi”, Doklady AN SSSR, 242:5 (1978), 1008-1011 | MR | Zbl

[12] Nahushev A. M., Nagruzhennye uravnenija i ih primenenija, Nauka, Moskva, 2012, 232 pp.

[13] Nakhushev A. M., “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsial'nykh uravneniy i ego prilozheniya k dinamike pochvennoy vlagi i gruntovykh vod”, Differents. uravneniya, 18:1 (1982), 72–81 | MR | Zbl

[14] Nakhushev A. M., “O zadache Darbu dlya odnogo vyrozhdayushchegosya nagruzhennogo integrodifferentsial'nogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[15] Ozturk Ilhan, “Boundary value problem for the loaded differential equation of fractional order”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 1:2 (1995), 12–17

[16] Tokova A. A., “Zadacha s nelokal'nymi kraevymi uslovijami dlja odnogo klassa nagruzhennyh differencial'nyh uravnenij v chastnyh proizvodnyh”, Vestn. Sam. gos. tehn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 43, 178–181 | DOI

[17] Tokova A. A., “Kraevaya zadacha s usloviyami Puankare dlya lineynogo nagruzhennogo differentsial’nogo uravneniya s chastnymi proizvodnymi parabolicheskogo tipa”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 9:1 (2007), 110–112

[18] Khushtova F. G., “Nelokal’naya kraevaya zadacha dlya nagruzhennogo uravneniya parabolicheskogo tipa so znakoperemennoy kharakteristicheskoy formoy”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 13:2 (2011), 71–76

[19] Frost M. B., “Solvability of an initial-boundary problem for a loaded wave equation”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 2(35), 88-81

[20] Gogunokov Z. G., “Zadacha Gursa dlja nagruzhennogo giperbolicheskogo uravnenija vtorogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 5:1 (2000), 20–23

[21] Khubiev K. U., “Ob odnoy modeli nagruzhennogo giperbolo-parabolicheskogo uravneniya v chastnykh proizvodnykh vtorogo poryadka s kharakteristicheskim izmeneniem tipa”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 17:2 (2015), 48–51

[22] Khubiev K. U., “O modeli nagruzhennogo giperbolo–parabolicheskogo uravneniya v chastnykh proizvodnykh vtorogo poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2015, no. 2(11), 27–38

[23] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp. | MR

[24] Pskhu A. V., “Reshenie dvumernogo integral'nogo uravneniya Abelya vtorogo roda”, Izvestiya KBNTs RAN, 2016, no. 6(74)

[25] Ditkin V. A., Prudnikov F. P., Operacionnoe ischislenie po dvum peremennym i ego prilozhenija, Fizmatlit, Moskva, 1959, 178 pp. | MR