Boundary value problem for a generalized telegraph equation of fractional order with variable coefficients
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 50-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we construct the solution to the Goursat problem for a generalized telegraph equation of fractional order with variable coefficients.
Mots-clés : Goursat problem
Keywords: fractional derivative.
@article{VKAM_2016_5_a7,
     author = {R. A. Pshibikhova},
     title = {Boundary value problem for a generalized telegraph equation of fractional order with variable coefficients},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {50--55},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a7/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - Boundary value problem for a generalized telegraph equation of fractional order with variable coefficients
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 50
EP  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a7/
LA  - ru
ID  - VKAM_2016_5_a7
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T Boundary value problem for a generalized telegraph equation of fractional order with variable coefficients
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 50-55
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a7/
%G ru
%F VKAM_2016_5_a7
R. A. Pshibikhova. Boundary value problem for a generalized telegraph equation of fractional order with variable coefficients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 50-55. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a7/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[2] Pshibihova R. A., “Zadacha Gursa dlja obobshhennogo telegrafnogo uravnenija drobnogo porjadka”, Differencial'nye uravnenija, 50:6, 839–843 | DOI | MR | Zbl

[3] Pshibihova R. A., “Zadacha Gursa dlja drobnogo telegrafnogo uravnenija s proizvodnymi Kaputo”, Matematicheskie zametki, 99:4 (2016), 562–566 | MR

[4] Eremin A. S., “Tri zadachi dlja odnogo uravnenija v chastnyh drobnyh proizvodnyh”, Matematicheskoe modelirovanie i kraevye zadachi, 3 (2004), 94-98

[5] Smirnov V. I., Kurs vysshej matematiki, Nauka, Moskva, 1981, 550 pp.

[6] Pshu A. V., Uravnenija v chastnyh proizvodnyh drobnogo porjadka, Nauka, Moskva, 2005, 199 pp. | MR

[7] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, North-Holland-Amsterdam, 2006, 204 pp. | MR | Zbl