Problem with an integral condition for fractional diffusion equation with operator Caputo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a nonlocal boundary value problem with integral condition for the fractional diffusion equation with Caputo operator. The theorem of existence of a solution of the problem.
Keywords: there it has proved the existence and uniqueness of solutions of the problem.
@article{VKAM_2016_5_a5,
     author = {F. M. Losanova},
     title = {Problem with an integral condition for fractional diffusion equation with operator {Caputo}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {38--44},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a5/}
}
TY  - JOUR
AU  - F. M. Losanova
TI  - Problem with an integral condition for fractional diffusion equation with operator Caputo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 38
EP  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a5/
LA  - ru
ID  - VKAM_2016_5_a5
ER  - 
%0 Journal Article
%A F. M. Losanova
%T Problem with an integral condition for fractional diffusion equation with operator Caputo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 38-44
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a5/
%G ru
%F VKAM_2016_5_a5
F. M. Losanova. Problem with an integral condition for fractional diffusion equation with operator Caputo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 38-44. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a5/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[2] Caputo M., “Lineal model of dissipation whose Q is almost frequancy independent. II. Geophys.”, J. Astronom. Soc., 13 (1967), 529-539 | DOI

[3] Caputo M., Elasticita e Dissipazione, Zanichelli-Bologna, 1969.

[4] Kochubey A. N., “Diffuziya drobnogo poryadka”, Differentsial'nye uravneniya, 26:4 (1990), 660-670 | MR | Zbl

[5] Gekkieva S. Kh., Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravneniy s drobnoy proizvodnoy po vremeni, Diss. kand. fiz.-mat. nauk, Nauchno-issledovatel'skiy institut prikladnoy matematiki i avtomatizatsii KBNTs RAN, Nal'chik, 2003

[6] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. | MR

[7] Nakhusheva V. A., Differentsial'nye uravneniya matematicheskikh modeley nelokal'nykh protsessov, Nauka, Moskva, 2006, 173 pp. | MR

[8] Nahusheva Z. A., “1-ja i 2-ja kraevye zadachi v integral'noj postanovke dlja parabolicheskogo uravnenija vtorogo porjadka”, Differencial'nye uravnenija, 26:1 (1990), 1982-1992 | MR | Zbl

[9] Losanova F. M., “Nelokal'naya kraevaya zadacha s operatorom Kaputo”, Izv. VUZov Severo-Kavkazskiy region, 2010, no. 5(159), 22-25

[10] Losanova F. M., “Nelokal'naja kraevaja zadacha dlja nagruzhennogo uravnenija s operatorom Kaputo”, Sovremennye voprosy matematicheskoj fiziki, matematicheskoj biologii i informatiki, Vserossijsaja nauchnaja konferencija molodyh uchenyh, 80-81

[11] Losanova F. M., “Zadacha s usloviem Samarskogo dlya uravneniya drobnoi diffuzii v polupolose”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2015, no. 2(11), 17-21 ; Losanova F. M., “Problem with Samarskii condition for fractional diffusion equation in the half-string”, Bulletin KRASEC. Physical and Mathematical Sciences, 11:2, 15-18