An estimate for the fundamental solution of high order parabolic equation with Riemann-Liouville derivative with respect to the time variable
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we derived an estimate for the fundamental solution of high order parabolic equation with time fractional derivative.
Keywords: Riemann-Liouville fractional derivative
Mots-clés : parabolic equation.
@article{VKAM_2016_5_a4,
     author = {L. L. Karasheva},
     title = {An estimate for the fundamental solution of high order parabolic equation with {Riemann-Liouville} derivative with respect to the time variable},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {32--37},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a4/}
}
TY  - JOUR
AU  - L. L. Karasheva
TI  - An estimate for the fundamental solution of high order parabolic equation with Riemann-Liouville derivative with respect to the time variable
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 32
EP  - 37
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a4/
LA  - ru
ID  - VKAM_2016_5_a4
ER  - 
%0 Journal Article
%A L. L. Karasheva
%T An estimate for the fundamental solution of high order parabolic equation with Riemann-Liouville derivative with respect to the time variable
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 32-37
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a4/
%G ru
%F VKAM_2016_5_a4
L. L. Karasheva. An estimate for the fundamental solution of high order parabolic equation with Riemann-Liouville derivative with respect to the time variable. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 32-37. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a4/

[1] Nakhushev A. M., Uravneniya matematicheskoy biologii, Vyssh. shk., Moskva, 1995, 301 pp.

[2] Kochubey A. N., “Diffuziya drobnogo poryadka”, Differentsial'nye uravneniya, 26:4 (1990), 660–670 | Zbl

[3] Pskhu A. V., “Fundamental'noe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN Ser. matem., 73:2 (2009), 141–182 | DOI | Zbl

[4] Agrawal O. P., “A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain”, Computers and Structures, 79 (2001), 1497–1501 | DOI

[5] Voroshilov A. A., Kilbas A. A., “Zadacha Koshi dlya diffuzionno-volnovogo uravneniya s chastnoy proizvodnoy Kaputo”, Differentsial'nye uravneniya, 42:5 (2006), 599—609 | Zbl

[6] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, v. 204, Elsevier Science, 2006, 540 pp. | Zbl

[7] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[8] Ladyzhenskaya O. A., “O edinstvennosti resheniya zadachi Koshi dlya lineynogo parabolicheskogo uravneniya”, Matematicheskiy sbornik, 27:(69)2 (1950), 175–184 | Zbl

[9] Karasheva L. L., “Zadacha Koshi dlya parabolicheskogo uravneniya vysokogo poryadka s proizvodnoy Rimana-Liuvillya po vremennoy peremennoy”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 15:2 (2013), 40–43

[10] Dzhrbashyan M. M., Integral'nye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti, Nauka, M., 1966, 672 pp.

[11] Gindikin S. G., Fedoryuk M. V., “Asimptotika fundamental'nogo resheniya parabolicheskogo uravneniya s postoyannymi koeffitsientami”, UMN, 28:1(169) (1973), 235–236 | Zbl

[12] Wright E. M., “The generalized Bessel function of order greater than one”, Quart. J. Math., 11 (1940), 36–48 | DOI