Method of lines solution for solution of the first boundary value problem for diffusion equation of fractional order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 27-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study the first boundary value problem for the diffusion equation of fractional order. A solution in its difference form is obtained by the method of lines.
Mots-clés : diffusion equation
Keywords: fractional derivative, method of lines.
@article{VKAM_2016_5_a3,
     author = {S. Kh. Gekkieva and B. M. Kerefov},
     title = {Method of lines solution for solution of the first boundary value problem for diffusion equation of fractional order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {27--31},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a3/}
}
TY  - JOUR
AU  - S. Kh. Gekkieva
AU  - B. M. Kerefov
TI  - Method of lines solution for solution of the first boundary value problem for diffusion equation of fractional order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 27
EP  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a3/
LA  - ru
ID  - VKAM_2016_5_a3
ER  - 
%0 Journal Article
%A S. Kh. Gekkieva
%A B. M. Kerefov
%T Method of lines solution for solution of the first boundary value problem for diffusion equation of fractional order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 27-31
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a3/
%G ru
%F VKAM_2016_5_a3
S. Kh. Gekkieva; B. M. Kerefov. Method of lines solution for solution of the first boundary value problem for diffusion equation of fractional order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 27-31. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a3/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, FIZMATLIT, Moskva, 2003, 272 pp.

[2] Nakhusheva V. A., Differentsial'nye uravneniya matematicheskikh modeley nelokal'nykh protsessov, Nauka, M., 2006, 173 pp. | MR

[3] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsial'nykh uravneniy drobnogo poryadka”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 46:10 (2006), 1871–1881 | MR

[4] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp. | MR

[5] Kerefov M. A., Kraevye zadachi dlya modifitsirovannogo uravneniya vlagoperenosa s drobnoy po vremeni proizvodnoy, Diss.... kand. fiz.-mat. nauk, Nal'chik, 2000, 75 pp.

[6] Berezin I. S. Zhidkov N. P., Metody vychisleniy, v. 2, GIFML, 1962, 640 pp.

[7] Gekkieva S. Kh., Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravneniy s drobnoy proizvodnoy po vremeni, Dis. . . . kand. fiz.-mat. nauk, Nal'chik, 2003, 75 pp.