Application valued variable logic functions and neural networks in the decision-making system
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 93-100
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we propose a method for representing various-valued logic function in a logical neural network. This logical neural network will keep the totality of cause-andeffect relationships identified using various-valued logic functions with-in a given specified area. Thus, it becomes possible to transfer a logical algorithm to detect hidden patterns in a given specified area, in case when the values of logical variables are not well-defined and are values obscured between zero and one. These logic operations are implemented by special logic neural cells: conjunctors and disjunctors.
Keywords:
predicate, the predicate atomicity, various-valued logical function logical neural network, fuzzy logic variable.
@article{VKAM_2016_5_a13,
author = {D. P. Dimitrichenko},
title = {Application valued variable logic functions and neural networks in the decision-making system},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {93--100},
publisher = {mathdoc},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/}
}
TY - JOUR AU - D. P. Dimitrichenko TI - Application valued variable logic functions and neural networks in the decision-making system JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 93 EP - 100 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/ LA - ru ID - VKAM_2016_5_a13 ER -
D. P. Dimitrichenko. Application valued variable logic functions and neural networks in the decision-making system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 93-100. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/