Application valued variable logic functions and neural networks in the decision-making system
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 93-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we propose a method for representing various-valued logic function in a logical neural network. This logical neural network will keep the totality of cause-andeffect relationships identified using various-valued logic functions with-in a given specified area. Thus, it becomes possible to transfer a logical algorithm to detect hidden patterns in a given specified area, in case when the values of logical variables are not well-defined and are values obscured between zero and one. These logic operations are implemented by special logic neural cells: conjunctors and disjunctors.
Keywords: predicate, the predicate atomicity, various-valued logical function logical neural network, fuzzy logic variable.
@article{VKAM_2016_5_a13,
     author = {D. P. Dimitrichenko},
     title = {Application valued variable logic functions and neural networks in the decision-making system},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {93--100},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/}
}
TY  - JOUR
AU  - D. P. Dimitrichenko
TI  - Application valued variable logic functions and neural networks in the decision-making system
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 93
EP  - 100
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/
LA  - ru
ID  - VKAM_2016_5_a13
ER  - 
%0 Journal Article
%A D. P. Dimitrichenko
%T Application valued variable logic functions and neural networks in the decision-making system
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 93-100
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/
%G ru
%F VKAM_2016_5_a13
D. P. Dimitrichenko. Application valued variable logic functions and neural networks in the decision-making system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 93-100. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a13/

[1] Lyutikova L. A., Timofeev A. V., Sgurev V. V., Yotsov V. I., “Razvitie i primenenie mnogoznachnykh logik i setevykh potokov v intellektual'nykh sistemakh”, Trudy SPIIRAN, 2005, no. 2, 114–126

[2] Lyutikova L. A., Modelirovanie i minimizatsiya baz znaniy v terminakh mnogoznachnoy logiki predikatov, Preprint, NII PMA KBNTs RAN, Nal'chik, 2006, 33 pp.

[3] Barskiy A. B., Logicheskie neyronnye seti, BINOM, 2007, 352 pp.

[4] Dimitrichenko D. P., “Mnogokriterial'nyy poisk topologicheskikh struktur dlya optimal’nogo postroeniya lokal'nykh vychislitel'nykh setey”, Doklady Adygskoy (Cherkesskoy) mezhdunarodnoy akademii nauk, 14:2 (2012), 68–73

[5] Dimitrichenko D.\P., “Postroenie logicheskoy neyronnoy seti na osnove peremennoznachnykh predikatov”, «Aktual'nye problemy prikladnoy matematiki i informatiki, Mezhdunarodnaya nauchnaya konferentsiya, 2016, 101–104