@article{VKAM_2016_5_a10,
author = {B. I. Efendiev},
title = {The {{\CYRS}auchy} problem for a regular continuous differential equation of second order with regularized derivatives of segment order},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {72--79},
year = {2016},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/}
}
TY - JOUR AU - B. I. Efendiev TI - The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 72 EP - 79 IS - 5 UR - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/ LA - ru ID - VKAM_2016_5_a10 ER -
%0 Journal Article %A B. I. Efendiev %T The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2016 %P 72-79 %N 5 %U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/ %G ru %F VKAM_2016_5_a10
B. I. Efendiev. The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 72-79. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/
[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] Pshu A. V., “Ob operatorah tipa svertki i ih prilozhenie k teorii operatora integrodifferencirovanija kontinual’nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 5:2 (2001), 49–55
[3] Pshu A. V., “K teorii operatora integrodifferencirovanija kontinual'nogo porjadka”, Differenc. uravnenija, 40:1 (2004), 120–127 | MR | Zbl
[4] Pshu A. V., “Zadacha Koshi dlja differencial'nogo uravnenija kontinual'nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 7:2 (2005), 45–49
[5] Pshu A. V., “Fundamental'noe reshenie obyknovennogo differencial'nogo uravnenija kontinual'nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 9:1 (2007), 73–78
[6] Jefendiev B. I., “Nachal'naja zadacha dlja obyknovennogo nepreryvnogo differencial'nogo uravnenija vtorogo porjadka s postojannymi kojefficientami”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 82–86
[7] Dzhrbashjan M. M., Integral'nye preobrazovanija i predstavlenija funkcij v kompleksnoj oblasti, Nauka, Moskva, 1966, 672 pp.