The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 72-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we build a fundamental solution to a regular continuous differential equation of second order with regularized derivatives of segment order and find an explicit solution to Cauchy problem in terms of fundamental solution.
Keywords: Cauchy problem, the continuous differential equation regularized derivative segment of the order, the fundamental solution.
@article{VKAM_2016_5_a10,
     author = {B. I. Efendiev},
     title = {The {{\CYRS}auchy} problem for a regular continuous differential equation of second order with regularized derivatives of segment order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {72--79},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 72
EP  - 79
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/
LA  - ru
ID  - VKAM_2016_5_a10
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 72-79
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/
%G ru
%F VKAM_2016_5_a10
B. I. Efendiev. The Сauchy problem for a regular continuous differential equation of second order with regularized derivatives of segment order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 72-79. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a10/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Pshu A. V., “Ob operatorah tipa svertki i ih prilozhenie k teorii operatora integrodifferencirovanija kontinual’nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 5:2 (2001), 49–55

[3] Pshu A. V., “K teorii operatora integrodifferencirovanija kontinual'nogo porjadka”, Differenc. uravnenija, 40:1 (2004), 120–127 | MR | Zbl

[4] Pshu A. V., “Zadacha Koshi dlja differencial'nogo uravnenija kontinual'nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 7:2 (2005), 45–49

[5] Pshu A. V., “Fundamental'noe reshenie obyknovennogo differencial'nogo uravnenija kontinual'nogo porjadka”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 9:1 (2007), 73–78

[6] Jefendiev B. I., “Nachal'naja zadacha dlja obyknovennogo nepreryvnogo differencial'nogo uravnenija vtorogo porjadka s postojannymi kojefficientami”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 82–86

[7] Dzhrbashjan M. M., Integral'nye preobrazovanija i predstavlenija funkcij v kompleksnoj oblasti, Nauka, Moskva, 1966, 672 pp.