@article{VKAM_2016_4_a4,
author = {R. I. Parovik},
title = {On a hereditarity vibrating system with allowance for the effects stick-slip},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {30--35},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/}
}
R. I. Parovik. On a hereditarity vibrating system with allowance for the effects stick-slip. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2016), pp. 30-35. http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/
[1] Batista A. A., Carlson J. M., “Bifurcations from steady sliding to stick slip in boundary lubrication”, Physical Review E., 57:5 (1998), 4986–4996 | DOI
[2] Daub E. G., Carlson J. M., “Stick-slip instabilities and shear strain localization in amorphous materials”, Physical Review E, 80:6 (2009), 066113 | DOI | MR
[3] Rekhviashvili S. Sh., Razmernye yavleniya v fizike kondensirovannogo sostoyaniya i nanotekhnologiyakh, KBNTs RAN, Nal'chik, 2014, 250 pp.
[4] Parovik R. I., “Matematicheskoe modelirovanie jeffekta stick-slip s uchetom jereditarnosti”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:3 (2015), 70-77
[5] Scholz Ch. H., The mechanics of earthquakes and faulting, Cambridge university press, United Kingdom, 2002, 471 pp.
[6] Uvarov V. V., “Metody vydelenija jelektromagnitnyh signalov litosfernogo proishozhdenija”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 3(14), 91-97
[7] Parovik R. I., “Mathematical modeling of the stick-slip considering hereditarity”, Actual problems of applied mathematics and physics, PROSEEDINGS INTERNATIONAL RUSSIAN-CHINESE CONFERENCE (v. Tegenekli, Kabardino-Balkaria, 14-18 December 2015), KBSC RAS, Nalchik, 2015, 159-160.
[8] Parovik R. I., “On a credit oscillatory system with the inclusion of stick-slip”, E3S Web of Con., 11 (2016), 00018 | DOI
[9] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of control sciences, 26:3 (2016), 429-435 | DOI
[10] Parovik R. I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, International Journal of Communications, Network and System Sciences, 6:3 (2013), 134-138 | DOI
[11] Changpin Li, An Chen, Junjie Ye, “Numerical approaches to fractional calculus and fractional ordinary differential equation”, Journal of Computational Physics, 230 (2011), 3352-3368 | DOI | MR | Zbl