On a hereditarity vibrating system with allowance for the effects stick-slip
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2016), pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. explicit finite-difference scheme for the corresponding. Cauchy problem was constructed. Built on the basis of its waveform and phase trajectories.
Keywords: hereditarity, stick-slip effect, waveform, phase trajectory.
@article{VKAM_2016_4_a4,
     author = {R. I. Parovik},
     title = {On a hereditarity vibrating system with allowance for the effects stick-slip},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {30--35},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - On a hereditarity vibrating system with allowance for the effects stick-slip
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 30
EP  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/
LA  - ru
ID  - VKAM_2016_4_a4
ER  - 
%0 Journal Article
%A R. I. Parovik
%T On a hereditarity vibrating system with allowance for the effects stick-slip
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 30-35
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/
%G ru
%F VKAM_2016_4_a4
R. I. Parovik. On a hereditarity vibrating system with allowance for the effects stick-slip. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2016), pp. 30-35. http://geodesic.mathdoc.fr/item/VKAM_2016_4_a4/

[1] Batista A. A., Carlson J. M., “Bifurcations from steady sliding to stick slip in boundary lubrication”, Physical Review E., 57:5 (1998), 4986–4996 | DOI

[2] Daub E. G., Carlson J. M., “Stick-slip instabilities and shear strain localization in amorphous materials”, Physical Review E, 80:6 (2009), 066113 | DOI | MR

[3] Rekhviashvili S. Sh., Razmernye yavleniya v fizike kondensirovannogo sostoyaniya i nanotekhnologiyakh, KBNTs RAN, Nal'chik, 2014, 250 pp.

[4] Parovik R. I., “Matematicheskoe modelirovanie jeffekta stick-slip s uchetom jereditarnosti”, Doklady Adygskoj (Cherkesskoj) Mezhdunarodnoj akademii nauk, 17:3 (2015), 70-77

[5] Scholz Ch. H., The mechanics of earthquakes and faulting, Cambridge university press, United Kingdom, 2002, 471 pp.

[6] Uvarov V. V., “Metody vydelenija jelektromagnitnyh signalov litosfernogo proishozhdenija”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2016, no. 3(14), 91-97

[7] Parovik R. I., “Mathematical modeling of the stick-slip considering hereditarity”, Actual problems of applied mathematics and physics, PROSEEDINGS INTERNATIONAL RUSSIAN-CHINESE CONFERENCE (v. Tegenekli, Kabardino-Balkaria, 14-18 December 2015), KBSC RAS, Nalchik, 2015, 159-160.

[8] Parovik R. I., “On a credit oscillatory system with the inclusion of stick-slip”, E3S Web of Con., 11 (2016), 00018 | DOI

[9] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of control sciences, 26:3 (2016), 429-435 | DOI

[10] Parovik R. I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, International Journal of Communications, Network and System Sciences, 6:3 (2013), 134-138 | DOI

[11] Changpin Li, An Chen, Junjie Ye, “Numerical approaches to fractional calculus and fractional ordinary differential equation”, Journal of Computational Physics, 230 (2011), 3352-3368 | DOI | MR | Zbl