@article{VKAM_2016_2_a7,
author = {V. A. Kim},
title = {Duffing oscillator with an external harmonic impact and derived variables fractional {Remann-Liouville,} is characterized by viscous friction},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {50--54},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/}
}
TY - JOUR AU - V. A. Kim TI - Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 50 EP - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/ LA - ru ID - VKAM_2016_2_a7 ER -
%0 Journal Article %A V. A. Kim %T Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2016 %P 50-54 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/ %G ru %F VKAM_2016_2_a7
V. A. Kim. Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 50-54. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/
[1] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, New York, 2011, 218 pp. | Zbl
[2] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.
[3] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 013107 | DOI | MR
[4] Gao X., Yu J., “Chaos in the fractional order periodically forced complex Duffing’s oscillators”, Chaos, Solitons Fractals, 24:4 (2005), 1097–1104 | DOI | Zbl
[5] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Applied Mechanics Reviews, 63:1 (2010), 010801 | DOI
[6] Parovik R. I., “Matematicheskoe modelirovanie nelokalnoi kolebatelnoi sistemy Duffinga s fraktalnym treniem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2015, no. 1(10), 18–24
[7] Parovik R. I., “O chislennom reshenii uravneniya fraktalnogo ostsillyatora s proizvodnoi drobnogo peremennogo poryadka ot vremeni”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 60–65
[8] Parovik R. I., “Chislennyi analiz nekotorykh ostsillyatsionnykh uravnenii s proizvodnoi drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 2(9), 30–35
[9] Parovik R. I., “Ob odnoi konechno-raznostnoi skheme dlya matematicheskoi modeli nelineinogo ereditarnogo ostsillyatora”, Mezhdunarodnyi nauchno-issledovatelskii zhurnal, 2016, no. 4-2(9), 138–142 | Zbl
[10] Petukhov A. A., Reviznikov D. L., “Algoritmy chislennykh reshenii drobno-differentsialnykh uravnenii”, Vestnik MAI, 16:6 (2009), 228–243
[11] Marchuk G.I., Vychislitelnye metody, Nauka, M., 1977, 456 pp.
[12] Parovik R. I., “Ob issledovanii ustoichivosti ereditarnogo ostsillyatora Van-der-Polya”, Fundamentalnye issledovaniya, 2016, no. 3-2, 283–287