Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 50-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper suggested a generalization of Duffing oscillator with viscous friction hereditarity, which is represented by the operator of fractional order derivative of the variable in the Riemann-Liouville. Built explicit finite difference scheme for calculating approximate solutions, as well as the phase trajectories for different values of the control parameters.
Keywords: Riemann-Liouville derivative Grunwald-Letnikova, hereditarity, Duffing oscillator, phase trajectory.
@article{VKAM_2016_2_a7,
     author = {V. A. Kim},
     title = {Duffing oscillator with an external harmonic impact and derived variables fractional {Remann-Liouville,} is characterized by viscous friction},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {50--54},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/}
}
TY  - JOUR
AU  - V. A. Kim
TI  - Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 50
EP  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/
LA  - ru
ID  - VKAM_2016_2_a7
ER  - 
%0 Journal Article
%A V. A. Kim
%T Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 50-54
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/
%G ru
%F VKAM_2016_2_a7
V. A. Kim. Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 50-54. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a7/

[1] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, New York, 2011, 218 pp. | Zbl

[2] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[3] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 013107 | DOI | MR

[4] Gao X., Yu J., “Chaos in the fractional order periodically forced complex Duffing’s oscillators”, Chaos, Solitons Fractals, 24:4 (2005), 1097–1104 | DOI | Zbl

[5] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Applied Mechanics Reviews, 63:1 (2010), 010801 | DOI

[6] Parovik R. I., “Matematicheskoe modelirovanie nelokalnoi kolebatelnoi sistemy Duffinga s fraktalnym treniem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2015, no. 1(10), 18–24

[7] Parovik R. I., “O chislennom reshenii uravneniya fraktalnogo ostsillyatora s proizvodnoi drobnogo peremennogo poryadka ot vremeni”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 60–65

[8] Parovik R. I., “Chislennyi analiz nekotorykh ostsillyatsionnykh uravnenii s proizvodnoi drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 2(9), 30–35

[9] Parovik R. I., “Ob odnoi konechno-raznostnoi skheme dlya matematicheskoi modeli nelineinogo ereditarnogo ostsillyatora”, Mezhdunarodnyi nauchno-issledovatelskii zhurnal, 2016, no. 4-2(9), 138–142 | Zbl

[10] Petukhov A. A., Reviznikov D. L., “Algoritmy chislennykh reshenii drobno-differentsialnykh uravnenii”, Vestnik MAI, 16:6 (2009), 228–243

[11] Marchuk G.I., Vychislitelnye metody, Nauka, M., 1977, 456 pp.

[12] Parovik R. I., “Ob issledovanii ustoichivosti ereditarnogo ostsillyatora Van-der-Polya”, Fundamentalnye issledovaniya, 2016, no. 3-2, 283–287