@article{VKAM_2016_2_a6,
author = {I. V. Drobysheva},
title = {Mathematical modeling of nonlinear oscillators hereditarity example {Duffing} oscillator with fractional derivatives in the {Riemann-Liouville}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {43--49},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a6/}
}
TY - JOUR AU - I. V. Drobysheva TI - Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 43 EP - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a6/ LA - ru ID - VKAM_2016_2_a6 ER -
%0 Journal Article %A I. V. Drobysheva %T Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2016 %P 43-49 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2016_2_a6/ %G ru %F VKAM_2016_2_a6
I. V. Drobysheva. Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 43-49. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a6/
[1] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.
[2] Gao X., Yu J., “Chaos in the fractional order periodically forced complex Duffing’s oscillators”, Chaos, Solitons Fractals, 24:4 (2005), 1097–1104 | DOI
[3] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Applied Mechanics Reviews, 63:1 (2010), 010801 | DOI
[4] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, New York, 2011, 218 pp.
[5] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 013107 | DOI | MR
[6] Nakhushev A. M., Drobnoe ischislenie i ego prilozheniya, Fizmatlit, M., 2003, 272 pp.
[7] Parovik R. I., “Matematicheskoe modelirovanie nelokalnoi kolebatelnoi sistemy Duffinga s fraktalnym treniem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2015, no. 1(10), 18–24
[8] Parovik R. I., “O chislennom reshenii uravneniya fraktalnogo ostsillyatora s proizvodnoi drobnogo peremennogo poryadka ot vremeni”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 60–65
[9] Parovik R. I., “Chislennyi analiz nekotorykh ostsillyatsionnykh uravnenii s proizvodnoi drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 2(9), 30–35
[10] Parovik R. I., “Ob odnoi konechno-raznostnoi skheme dlya matematicheskoi modeli nelineinogo ereditarnogo ostsillyatora”, Mezhdunarodnyi nauchno-issledovatelskii zhurnal, 2016, no. 4-2(9), 138–142
[11] Petukhov A. A., Reviznikov D. L., “Algoritmy chislennykh reshenii drobno-differentsialnykh uravnenii”, Vestnik MAI, 16:6 (2009), 228–243
[12] Marchuk G.I., Vychislitelnye metody, Nauka, M., 1977, 456 pp.
[13] Parovik R. I., “Ob issledovanii ustoichivosti ereditarnogo ostsillyatora Van-der-Polya”, Fundamentalnye issledovaniya, 2016, no. 3-2, 283–287