Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 34-42
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is an example of the application of methods for constructing solutions of integral and differential equations. Here we consider the equation of parabolic-hyperbolic type $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right)(Lu) = 0$ in a pentagonal area. We prove a theorem on the unique solvability of a set of two tasks.
Keywords:
differential and integral equations, a method of constructing solutions, boundary problems, parabolic-hyperbolic type, unique solvability.
@article{VKAM_2016_2_a5,
author = {M. Mamajonov and S. M. Mamajonov and Kh. B. Mamadalieva},
title = {Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {34--42},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a5/}
}
TY - JOUR AU - M. Mamajonov AU - S. M. Mamajonov AU - Kh. B. Mamadalieva TI - Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 34 EP - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a5/ LA - ru ID - VKAM_2016_2_a5 ER -
%0 Journal Article %A M. Mamajonov %A S. M. Mamajonov %A Kh. B. Mamadalieva %T Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2016 %P 34-42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2016_2_a5/ %G ru %F VKAM_2016_2_a5
M. Mamajonov; S. M. Mamajonov; Kh. B. Mamadalieva. Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 34-42. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a5/