Gellerstedt problem for a parabolic-hyperbolic equation degenerating type and order
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 28-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with the formulation and study of boundary value Gellerstedt type problem for parabolic-hyperbolic equation with degeneration of the type and order within the area which equivalently reduced to integral equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Gellerstedta problem, type and order of degeneracy, integral equations, integral-differential operator of fractional order, modified Cauchy problem.
Mots-clés : parabolic-equation hyper-parabolic type
                    
                  
                
                
                Mots-clés : parabolic-equation hyper-parabolic type
@article{VKAM_2016_2_a4,
     author = {Z. S. Madrakhimova},
     title = {Gellerstedt problem for a parabolic-hyperbolic equation degenerating type and order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {28--33},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a4/}
}
                      
                      
                    TY - JOUR AU - Z. S. Madrakhimova TI - Gellerstedt problem for a parabolic-hyperbolic equation degenerating type and order JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2016 SP - 28 EP - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a4/ LA - ru ID - VKAM_2016_2_a4 ER -
Z. S. Madrakhimova. Gellerstedt problem for a parabolic-hyperbolic equation degenerating type and order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 28-33. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a4/
