Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of preservation of the third adiabatic invariant motion of charged particles $v_{II} = 0$ (equatorial plane) in the flow and the canonical form in magnetic fields having a weak asymmetry. Go to rotating with the angular velocity of the drift coordinate system allows us to reduce the problem to have been solved, namely, the task of saving the third adiabatic invariant in the axially symmetric, but the time-varying magnetic field.
Keywords: adiabatic invariant motion asymmetry weak magnetic field, drift approximation.
@article{VKAM_2015_2_a9,
     author = {V. V. Bogdanov and A. V. Kaisin},
     title = {Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {67--76},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/}
}
TY  - JOUR
AU  - V. V. Bogdanov
AU  - A. V. Kaisin
TI  - Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 67
EP  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/
LA  - ru
ID  - VKAM_2015_2_a9
ER  - 
%0 Journal Article
%A V. V. Bogdanov
%A A. V. Kaisin
%T Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 67-76
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/
%G ru
%F VKAM_2015_2_a9
V. V. Bogdanov; A. V. Kaisin. Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 67-76. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/

[1] V. V. Bogdanov, V. D. Pletnev, “K voprosu o tochnosti sokhraneniya tretego adiabaticheskogo invarianta dvizheniya zaryazhennoi chastitsy v aksialno-simmetrichnykh polyakh”, Kosmicheskie issledovaniya, 10:3 (1972), 358–367 | MR

[2] V. V. Bogdanov, V. D. Pletnev, “K voprosu o tochnosti sokhraneniya tretego adiabaticheskogo invarianta dvizheniya zaryazhennoi chastitsy v aksialno-simmetrichnykh polyakh”, Kosmicheskie issledovaniya, 10:4 (1972), 528–531

[3] V. V. Bogdanov, Dinamika magnitosfernoi plazmy v dreifovom priblizhenii, Dalnauka, Vladivostok, 2006, 140 pp.

[4] N. N. Bogolyubov, D. N. Zubarev, “Metod asimptoticheskogo priblizheniya dlya sistem s vraschayuscheisya fazoi i ego primenenie k dvizheniyu zaryazhennykh chastits v magnitnom pole”, Ukr. mat. zhurn., 1955, no. 1, 5–17 | MR | Zbl

[5] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963, 410 pp. | MR

[6] J. Berkowitz, C. Gardner, Communz, Pure and Appl. Math., 12 (1959), 501 | DOI | MR | Zbl

[7] D. H. Fairfield, “The average magnetic field configuration of outer magnetosphere”, J. Geophys. Res., 73 (1968), 7329–7338 | DOI

[8] L. D. Landau, E. M. Lifshits, Mekhanika, Nauka, M., 1965, 204 pp. | MR

[9] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 509 pp. | MR

[10] Kh. Rederer, Dinamika radiatsii, zakhvachennoi geomagnitnym polem, Mir, M., 1972, 192 pp.