Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 67-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of preservation of the third adiabatic invariant motion of charged particles $v_{II} = 0$ (equatorial plane) in the flow and the canonical form in magnetic fields having a weak asymmetry. Go to rotating with the angular velocity of the drift coordinate system allows us to reduce the problem to have been solved, namely, the task of saving the third adiabatic invariant in the axially symmetric, but the time-varying magnetic field.
Keywords: adiabatic invariant motion asymmetry weak magnetic field, drift approximation.
@article{VKAM_2015_2_a9,
     author = {V. V. Bogdanov and A. V. Kaisin},
     title = {Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {67--76},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/}
}
TY  - JOUR
AU  - V. V. Bogdanov
AU  - A. V. Kaisin
TI  - Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 67
EP  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/
LA  - ru
ID  - VKAM_2015_2_a9
ER  - 
%0 Journal Article
%A V. V. Bogdanov
%A A. V. Kaisin
%T Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 67-76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/
%G ru
%F VKAM_2015_2_a9
V. V. Bogdanov; A. V. Kaisin. Save the third adiabatic invariants of motion in the equatorial plane magnetic field with a weak axial asymmetry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 67-76. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a9/