Painlevé test of a magnetohydrodynamics system
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 61-66
Cet article a éte moissonné depuis la source Math-Net.Ru
One approximation of magnetohydrodynamics equations, which describe the cosmic object's magnetic field, is considered. The analytic properties of a nonlinear system are investigated by Painlevé test. Values of the coefficients in a simplified magnetohydrodynamics system are calculated for the necessary condition of Painlevé property.
Mots-clés :
Painlevé test
Keywords: Kovalevski-Gambier method.
Keywords: Kovalevski-Gambier method.
@article{VKAM_2015_2_a8,
author = {G. M. Vodinchar and D. S. Noshenko and A. S. Perezhogin},
title = {Painlev\'e test of a magnetohydrodynamics system},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {61--66},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a8/}
}
G. M. Vodinchar; D. S. Noshenko; A. S. Perezhogin. Painlevé test of a magnetohydrodynamics system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 61-66. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a8/
[1] Ya. B. Zeldovich, A. A. Ruzmaikin, D. D. Sokolov, Magnitnye polya v astrofizike, RKhD, M.-Izhevsk, 2006, 384 pp.
[2] P. G. Frik, Turbulentnost: podkhody i modeli, RKhD, M.-Izhevsk, 332 pp.
[3] E. B. Gledzer, F. V. Dolzhanskii, A. M. Obukhov, Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 2010, 368 pp. | MR
[4] R. M. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevskii institut kompyuternykh issledovanii, M.-Izhevsk, 2011, 340 pp.