Reversal of magnetic field in the large-scale $\alpha\Omega$-dinamo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 55-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper investigates the question of the possibility of a reversal in the framework of low-mode model, $\alpha\Omega$-dinamo. The parameters of the MHD system in which the possible reversal of the magnetic field in the relative constancy of the velocity field are defined. There are results of numerical solution of the assumption of various type of $\alpha$-effect amplitude dependence from the radius.
Keywords: $\alpha\Omega$-dynamo, magnetic field, reversal
Mots-clés : large-scale dynamo.
@article{VKAM_2015_2_a7,
     author = {G. M. Vodinchar and A. N. Godomskaya and O. V. Sheremet'eva},
     title = {Reversal of magnetic field in the large-scale $\alpha\Omega$-dinamo},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {55--60},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a7/}
}
TY  - JOUR
AU  - G. M. Vodinchar
AU  - A. N. Godomskaya
AU  - O. V. Sheremet'eva
TI  - Reversal of magnetic field in the large-scale $\alpha\Omega$-dinamo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 55
EP  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a7/
LA  - ru
ID  - VKAM_2015_2_a7
ER  - 
%0 Journal Article
%A G. M. Vodinchar
%A A. N. Godomskaya
%A O. V. Sheremet'eva
%T Reversal of magnetic field in the large-scale $\alpha\Omega$-dinamo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 55-60
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a7/
%G ru
%F VKAM_2015_2_a7
G. M. Vodinchar; A. N. Godomskaya; O. V. Sheremet'eva. Reversal of magnetic field in the large-scale $\alpha\Omega$-dinamo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 55-60. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a7/

[1] E. N. Parker, “Hydromagnetic dynamo models”, Astrophys. J., 1955, no. 122, 293–314 | DOI | MR

[2] F. Krause, K.-H. Rädler, Mean-filed magnetohydrodynamics and dynamo theory, Pergamon Press, 1980 | MR

[3] M. Steenbek, F. Krause, K.-H. Radler, “Berechnung der mittlerer Lorentz–Field Starke $\mathfrak{v}\times\mathfrak{B}$ für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beenflusster Bewegung”, Z. Naturforsch, 1996, no. 21, 369–376

[4] M. Steenbek, F. Krause, “Zur Dynamotheorie stellarer and planetarer Magnetfelder. I. Berechnunug sonnenahnlicher Wechselfeldgeneratoren”, Astron. Nachr., 1969, no. 291, 49–84 | DOI

[5] Ya. B. Zeldovich, A. A. Rusmaikin, D. D. Sokoloff, Magnetic fields in astrophysics. The Fluid Mechanics of Astrophysics and Geophysics, Gordon and Breach, New York, 1983

[6] R. T. Merril, M. W. McElhinny, P. L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, London, 1996

[7] E. B. Gledzer, F. V. Dolzhanskii, A. M. Obukhov, Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981, 368 pp. | MR

[8] L. E. Elsgolts, Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp. | MR