About model of loaded partial hyperbolic-parabolic differential equation of second order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 27-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We studied a models of loaded equation of mixed hyperbolic-parabolic type with characteristicly and not characteristicly modifying line. For the proposed equation models boundary value problem is considered and solutions is written out.
Keywords: equation model, loaded equation, hyperbolic-parabolic equation, boundary value problem.
@article{VKAM_2015_2_a4,
     author = {K. U. Khubiev},
     title = {About model of loaded partial hyperbolic-parabolic differential equation of second order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {27--38},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a4/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - About model of loaded partial hyperbolic-parabolic differential equation of second order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 27
EP  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a4/
LA  - ru
ID  - VKAM_2015_2_a4
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T About model of loaded partial hyperbolic-parabolic differential equation of second order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 27-38
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a4/
%G ru
%F VKAM_2015_2_a4
K. U. Khubiev. About model of loaded partial hyperbolic-parabolic differential equation of second order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 27-38. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a4/

[1] A. M. Nakhushev, “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego prilozheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differents. uravneniya, 18:1 (1982), 72–81 | MR | Zbl

[2] A. M. Nakhushev, “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[3] I. Ozturk, “Boundary value problem for the loaded differential equation of fractional order”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 1:2 (1995), 12–17

[4] A. A. Tokova, “O pervoi kraevoi zadache dlya odnogo nagruzhennogo differentsialnogo uravneniya vtorogo poryadka”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 8:1 (2005), 87–91

[5] A. A. Tokova, “Ob odnoi nelokalnoi kraevoi zadache dlya nagruzhennogo differentsialnogo uravneniya so znakoperemennoi kharakteristicheskoi formoi”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2011, no. 2, 40–45 | DOI

[6] A. M. Nakhushev, Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012, 232 pp.

[7] K. U. Khubiev, “Ob odnoi modeli nagruzhennogo giperbolo-parabolicheskogo uravneniya v chastnykh proizvodnykh vtorogo poryadka s kharakteristicheskim izmeneniem tipa”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:2 (2015), 48–51

[8] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp. | MR

[9] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.