Finite-difference scheme for fractal oscillator with a variable fractional order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 88-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the explicit finite difference schemes for the fractional oscillator. The questions of approximation, stability and convergence of these schemes.
Keywords: finite-difference scheme, stability.
Mots-clés : convergence
@article{VKAM_2015_2_a12,
     author = {R. I. Parovik},
     title = {Finite-difference scheme for fractal oscillator with a variable fractional order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {88--95},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a12/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Finite-difference scheme for fractal oscillator with a variable fractional order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 88
EP  - 95
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a12/
LA  - ru
ID  - VKAM_2015_2_a12
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Finite-difference scheme for fractal oscillator with a variable fractional order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 88-95
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a12/
%G ru
%F VKAM_2015_2_a12
R. I. Parovik. Finite-difference scheme for fractal oscillator with a variable fractional order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 88-95. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a12/

[1] R. I. Parovik, “Chislennyi analiz nekotorykh ostsillyatsionnykh uravnenii s proizvodnoi drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 9:2 (2014), 30–35

[2] R. I. Parovik, “Matematicheskoe modelirovanie ereditarnogo ostsillyatora”, Kompyuternye issledovaniya i modelirovanie, 7:5 (2015), 1002–1023

[3] S. Momani, Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order”, Chaos, Solitons Fractals, 31:5 (2007), 1248–1255 | DOI | MR | Zbl

[4] I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl

[5] K. B. Oldham, J. Spanier, The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. | MR | Zbl

[6] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena”, Chaos, Solitons Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl

[7] C. F. M. Coimbra, “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11 (2003), 692–703 | DOI | MR | Zbl

[8] H. Sheng, H. G. Sun, C. Coopmans, “A physical experimental study of variable-order fractional integrator and differentiator”, The European Physical Journal Special Topics, 193:1 (2011), 93–104 | DOI

[9] Ma Shichang, Xu Yufeng, Yue Wei, “Numerical solutions of a variable-order fractional financial system”, Journal of Applied Mathematics, 2012 | MR

[10] R. P. Meilanov, “K teorii filtratsii v poristykh sredakh s fraktalnoi strukturoi”, Pisma ZhTF, 22:23 (1996), 40–43

[11] H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, “A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems”, The European Physical Journal Special Topics, 193:1 (2011), 185–192 | DOI

[12] Xu Yufeng, Suat Erturk. Vedat, “A finite difference technique for solving variable-order fractional integro-differential equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712 | MR | Zbl

[13] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR