Characteristic problem for the loaded wave equation with specific changes
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 7-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the characteristic problem for the wave equation loaded with a special shift. A theorem on the uniqueness of the solution of the Goursat problem and find necessary conditions for its solvability.
Keywords: characteristics, wave equation, loaded equation.
Mots-clés : Goursat problem, Goursat condition
@article{VKAM_2015_2_a0,
     author = {A. H. Attaev},
     title = {Characteristic problem for the loaded wave equation with specific changes},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--12},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_2_a0/}
}
TY  - JOUR
AU  - A. H. Attaev
TI  - Characteristic problem for the loaded wave equation with specific changes
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 7
EP  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_2_a0/
LA  - ru
ID  - VKAM_2015_2_a0
ER  - 
%0 Journal Article
%A A. H. Attaev
%T Characteristic problem for the loaded wave equation with specific changes
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 7-12
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2015_2_a0/
%G ru
%F VKAM_2015_2_a0
A. H. Attaev. Characteristic problem for the loaded wave equation with specific changes. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2015), pp. 7-12. http://geodesic.mathdoc.fr/item/VKAM_2015_2_a0/

[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[2] A. M. Nakhushev, “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integrodifferentsialnogo uravneniya vtorogo poryadka”, Differentsialnye uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[3] A. Kh. Attaev, “Zadacha Gursa dlya lokalno-nagruzhennogo uravneniya so stepennym parabolicheskim vyrozhdeniem”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 10:2 (2008), 14–17

[4] A. Kh. Attaev, “Zadacha Gursa dlya nagruzhennogo giperbolicheskogo uravneniya s volnovym operatorom v glavnoi chasti”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tezisy dokladov AMADE (Minsk, Belarus, 2009)

[5] A. Kh. Attaev, “O zadache s dannymi na neperesekayuschikhsya kharakteristikakh”, Materialy Mezhdunarodnoi konferentsii «Kompleksnyi analiz i ego prilozheniya v differentsialnykh uravneniyakh i teorii chisel» (g. Belgorod, 17–21 oktyabrya 2011 g.), 19

[6] A. Kh. Attaev, “Zadacha Gursa dlya giperbolicheskogo uravneniya s kharakteristicheskoi nagruzkoi”, Materialy IV Mezhdunarodnoi konferentsii «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik–Terskol, 2013)

[7] A. Kh. Attaev, “Zadacha Gursa dlya nagruzhennogo giperbolicheskogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:3 (2014), 9–12