Nonpotential geomagnetic field, Schmidt-Bauer currents and atmospheric electric current
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2015), pp. 25-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to the developing model, the nonpotential part of the geomagnetic field is due to the vertical current associated with positive charge transfer by water vapour during plant and water surface evaporation in the same direction and with negative rain current in the opposite direction. These two processes are quite irregular both in space and in time, but the total charge transfered upwards to the clouds is almost equal to the charge transfered downwards to the Earth surface. Nevertheless, these processes result in the accumulation of positive charge in the lower ionosphere at the height of about 90 km.
Keywords: nonpotential part of geomagnetic field, Schmidt-Bauer currents, rain currents and evaporation currents.
@article{VKAM_2015_1_a3,
     author = {V. V. Kuznetsov},
     title = {Nonpotential geomagnetic field, {Schmidt-Bauer} currents and atmospheric electric current},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {25--33},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2015_1_a3/}
}
TY  - JOUR
AU  - V. V. Kuznetsov
TI  - Nonpotential geomagnetic field, Schmidt-Bauer currents and atmospheric electric current
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2015
SP  - 25
EP  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2015_1_a3/
LA  - ru
ID  - VKAM_2015_1_a3
ER  - 
%0 Journal Article
%A V. V. Kuznetsov
%T Nonpotential geomagnetic field, Schmidt-Bauer currents and atmospheric electric current
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2015
%P 25-33
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2015_1_a3/
%G ru
%F VKAM_2015_1_a3
V. V. Kuznetsov. Nonpotential geomagnetic field, Schmidt-Bauer currents and atmospheric electric current. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2015), pp. 25-33. http://geodesic.mathdoc.fr/item/VKAM_2015_1_a3/

[1] E. Shveidler, Sokhranenie elektricheskogo zaryada Zemli, OTL, L.-M., 1936, 75 pp.

[2] N. P. Benkova, Spokoinye solnechno-sutochnye variatsii zemnogo magnetizma., L.-M., 1941

[3] N. Fukushima, “Memorandum on Non-Curl-Free Geomagnetic Field”, IL Nuovo Cimento, 12:5 (1989), 541–546 | DOI

[4] U. Parkinson, Vvedenie v geomagnetizm, Mir, M., 1986, 525 pp. | MR

[5] K. Kh. Kanonidi, A. S. Lidvanskii, L. E. Sobisevich, N. S. Khaerdinov, 31-ya VKKL (Moskva, MGU, 2010)

[6] M. Stolzenburg, W. D. Rust, T. C. Marshall, “Electrical structure in thunderstorm convective regions 3. Synthesis”, Journal Geoph. Res., 103:D12 (1998), 14097–14108 | DOI

[7] V. V. Kuznetsov, N. V. Cherneva, G. I. Druzhin, “O vliyanii tsiklonov na atmosfernoe elektricheskoe pole Kamchatki”, DAN, 412:1 (2007), 147–150

[8] E. E. Ferguson, F. C. Fehsenfeld, “Water vapor ion cluster concentrations in the D-region”, J. Geophys. Res., 74:24 (1969), 5743–5751 | DOI

[9] V. V. Kuznetsov, N. V. Cherneva, I. Yu. Babakhanov, “Eksperimenty po aktivnomu vozdeistviyu strui vodyanogo para na atmosfernoe elektricheskoe pole”, FAO, 45:6 (2008), 803–808

[10] E. P. Borisenkov, “Sostoyanie i sovremennye problemy energetiki atmosfernykh protsessov”, Problemy sovremennoi gidrometeorologii, Gidrometeoizdat, L., 1977, 123–144

[11] A. P. Bakiyatov, A. A. Betev, A. Yu. Gvozdarev, “Issledovanie vikhrevoi sostavlyayuschei geomagnitnogo polya”, Fizika okruzhayuschei sredy, 2010, 18–21

[12] V. V. Plotkin, “Metod soglasovaniya komponent dlya issledovaniya lateralnykh neodnorodnostei po dannym globalnogo MVZ i MTZ”, Geologiya i Geofizika, 46:5 pages 568–578 (2005)