In-situ measuring method of radon and thoron diffusion coefficient in soil
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 81-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.
Mots-clés : radon, diffusion coefficient
Keywords: thoron, soil, in-situ method, flux density.
@article{VKAM_2014_1_a9,
     author = {V. S. Yakovleva},
     title = {In-situ measuring method of radon and thoron diffusion coefficient in soil},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {81--85},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a9/}
}
TY  - JOUR
AU  - V. S. Yakovleva
TI  - In-situ measuring method of radon and thoron diffusion coefficient in soil
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 81
EP  - 85
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a9/
LA  - ru
ID  - VKAM_2014_1_a9
ER  - 
%0 Journal Article
%A V. S. Yakovleva
%T In-situ measuring method of radon and thoron diffusion coefficient in soil
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 81-85
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a9/
%G ru
%F VKAM_2014_1_a9
V. S. Yakovleva. In-situ measuring method of radon and thoron diffusion coefficient in soil. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 81-85. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a9/

[1] R. I. Parovik, E. O. Makarov, P. P. Firstov, “Matematicheskoe modelirovanie fraktalnoi razmernosti geosredy i seismicheskaya aktivnost Yuzhnoi Kamchatki”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 42–49 | MR

[2] R. I. Parovik, P. P. Firstov, “Fazovyi analiz vremennykh ryadov geofizicheskikh polei”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2013, no. 1(6), 23–29

[3] V. S. Yakovleva, V. D. Karataev, A. V. Vukolov, I. I. Ippolitov, M. V. Kabanov, P. M. Nagorskii, S. V. Smirnov, P. P. Firstov, R. I. Parovik, “Skoordinirovannyi mnogofaktornyi eksperiment po analizu protsessov postupleniya pochvennogo radona v prizemnyi sloi atmosfery”, ANRI, 2009, no. 4, 55–60

[4] V. S. Yakovleva, Metody izmereniya plotnosti potoka radona i torona s poverkhnosti poristykh materialov, Monografiya, TPU, Tomsk, 2011, 174 pp.

[5] P. P. Firstov, V. S. Yakovleva, V. A. Shirokov, O. P. Rulenko, Yu. A. Filippov, O. P. Malysheva, “The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone”, Annals of Geophysics, 50:4 (2007), 547–556

[6] R. I. Parovik, P. P. Firstov, “Aprobatsiya novoi metodiki rascheta plotnosti potoka radona s poverkhnosti (na primere Petropavlovsk-Kamchatskogo geodinamicheskogo poligona)”, ANRI, 2009, no. 3, 52–57 | MR

[7] V. C. Rogers, K. K. Nielson, “Multiphase radon generation and transport in porous materials”, Health Phys., 60 (1991), 807–815 | DOI

[8] M. Hosoda, M. Shimo, M. Sugino, M. Furakawa, M. Fukushi, “Effect of Soil Moisture Content on Radon and Thoron Exhalation”, J. Nucl. Sci. Technol., 44:4 (2007), 664–672 | DOI

[9] Yu. P. Bulashevich, N. P. Kartashov, “Opredelenie koeffitsienta diffuzii radona v gornykh porodakh metodom mgnovennogo istochnika”, Izv. AN SSSR. Ser. fizika zemli, 1967, no. 10, 71–76

[10] Patent RF No2332687 G01T1/178. opubl. 27.08.2008

[11] V. S. Yakovleva, N. K. Ryzhakova, “Otsenka skorosti konvektsii radona v gruntakh po izmerennym znacheniyam porovoi aktivnosti”, Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya, 2003, no. 5, 466–469

[12] A. S. Serdyukova, Yu. T. Kapitanov, Izotopy radona i korotkozhivuschie produkty ikh raspada v prirode, Atomizdat, M., 1979, 294 pp.

[13] V. S. Yakovleva, “Modelirovanie vliyaniya sostoyaniya atmosfery i litosfery na dinamiku plotnosti potoka radona i torona s poverkhnosti zemli”, Izvestiya TPU, 317:2 (2010), 162–166

[14] V. S. Yakovleva, Metody i pribory kontrolya polei $\alpha$-,$\beta$-,$\gamma$ izluchenii i radona v sisteme «grunt-atmosfera», avtoreferat diss. na soiskanie uchenoi stepeni dokt. tekhn. nauk; spets. 05.11.13, Tomsk, 2013 http://www.lib.tpu.ru/fulltext/a/2013/71.pdf