On the numerical solution of equations fractal oscillator with variable order fractional of time
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 60-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a model of a fractal oscillator with variable fractional order. Received and investigated by numerical solution of the model. The phase trajectory.
Keywords: operator Gerasimov-Caputo, numerical solution, finite difference scheme, the phase trajectories.
@article{VKAM_2014_1_a5,
     author = {R. I. Parovik},
     title = {On the numerical solution of equations fractal oscillator with variable order fractional of time},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {60--65},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - On the numerical solution of equations fractal oscillator with variable order fractional of time
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 60
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/
LA  - ru
ID  - VKAM_2014_1_a5
ER  - 
%0 Journal Article
%A R. I. Parovik
%T On the numerical solution of equations fractal oscillator with variable order fractional of time
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 60-65
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/
%G ru
%F VKAM_2014_1_a5
R. I. Parovik. On the numerical solution of equations fractal oscillator with variable order fractional of time. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 60-65. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego prilozhenie, Fizmatlit, M., 2003, 272 pp.

[2] V. Kh. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izvestie vuzov Severo-Kavkazskii region. Estestvennye nauki, 2004, no. 1, 46–50

[3] A. A. Samarskii, P. N. Vabishevich, E. A. Samarskaya, Zadachi i uprazhneniya po chislennym metodam, KomKniga, M., 2007, 208 pp.

[4] R. P. Meilanov, M. S. Yanpolov, “Osobennosti fazovoi traektorii fraktalnogo ostsillyatora”, Pisma ZhTF, 28:1 (2002), 67–73

[5] S. Shen, F. Liu, “Error analysis of an explicit difference approximation for the fractional diffusion equation with insulated ends”, ANZIAM J., 46(E) (2005), 871–887 | MR

[6] R. I. Parovik, “Obobschennoe uravnenie Mate”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 12–17