@article{VKAM_2014_1_a5,
author = {R. I. Parovik},
title = {On the numerical solution of equations fractal oscillator with variable order fractional of time},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {60--65},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/}
}
R. I. Parovik. On the numerical solution of equations fractal oscillator with variable order fractional of time. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 60-65. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a5/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego prilozhenie, Fizmatlit, M., 2003, 272 pp.
[2] V. Kh. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izvestie vuzov Severo-Kavkazskii region. Estestvennye nauki, 2004, no. 1, 46–50
[3] A. A. Samarskii, P. N. Vabishevich, E. A. Samarskaya, Zadachi i uprazhneniya po chislennym metodam, KomKniga, M., 2007, 208 pp.
[4] R. P. Meilanov, M. S. Yanpolov, “Osobennosti fazovoi traektorii fraktalnogo ostsillyatora”, Pisma ZhTF, 28:1 (2002), 67–73
[5] S. Shen, F. Liu, “Error analysis of an explicit difference approximation for the fractional diffusion equation with insulated ends”, ANZIAM J., 46(E) (2005), 871–887 | MR
[6] R. I. Parovik, “Obobschennoe uravnenie Mate”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 12–17