A nonlocal boundary value problem for a mixed-type equation in an unbounded domain, which is part of an elliptic rectangle
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In an article for mixed-type equation in an unbounded domain elliptic part is a rectangle, the unique solvability of a nonlocal boundary value problem. The uniqueness of the solution is proved by energy integrals, and the existence of the method of integral equations.
Keywords: mixed-type equation, the nonlocal boundary value problem, a method of energy integrals, the method of integral equations.
@article{VKAM_2014_1_a4,
     author = {R. T. Zunnunov and M. A. Mamasolieva},
     title = {A nonlocal boundary value problem for a mixed-type equation in an unbounded domain, which is part of an elliptic rectangle},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {49--59},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a4/}
}
TY  - JOUR
AU  - R. T. Zunnunov
AU  - M. A. Mamasolieva
TI  - A nonlocal boundary value problem for a mixed-type equation in an unbounded domain, which is part of an elliptic rectangle
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 49
EP  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a4/
LA  - ru
ID  - VKAM_2014_1_a4
ER  - 
%0 Journal Article
%A R. T. Zunnunov
%A M. A. Mamasolieva
%T A nonlocal boundary value problem for a mixed-type equation in an unbounded domain, which is part of an elliptic rectangle
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 49-59
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a4/
%G ru
%F VKAM_2014_1_a4
R. T. Zunnunov; M. A. Mamasolieva. A nonlocal boundary value problem for a mixed-type equation in an unbounded domain, which is part of an elliptic rectangle. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 49-59. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a4/

[1] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola, M., 1965, 424 pp. | MR

[2] Salakhitdinov M.S., Urinov A.K., Kraevye zadachi dlya uravneniya smeshannogo tipa so spektralnym parametrom, FAN, Tashkent, 1997, 165 pp. | MR

[3] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[4] N. I. Bakievich, “Singulyarnye zadachi Trikomi dlya uravneniya $y^m u_{xx}-u_{yy}-\lambda^2 y^m u=0$”, Izv. vyssh. uch. zav. Seriya «Matematika», 1964, no. 2(39), 7–13 | Zbl

[5] M. S. Salakhitdinov, Uravneniya smeshanno-sostavnogo tipa, FAN, Tashkent, 1974, 155 pp. | MR

[6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR

[7] N. I. Muskheleshvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR