Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 33-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
Keywords: the loaded equation, elliptic-hyperbolic type, double-connected domain, existence and uniqueness of solution, an extremume principle, the integrated equations.
@article{VKAM_2014_1_a3,
     author = {O. Kh. Abdullaev},
     title = {Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {33--48},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a3/}
}
TY  - JOUR
AU  - O. Kh. Abdullaev
TI  - Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 33
EP  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a3/
LA  - ru
ID  - VKAM_2014_1_a3
ER  - 
%0 Journal Article
%A O. Kh. Abdullaev
%T Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 33-48
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a3/
%G ru
%F VKAM_2014_1_a3
O. Kh. Abdullaev. Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 33-48. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a3/

[1] A. M. Nakhushev, “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Diff. uravneniya, 12:1 (1976), 103–108 | MR

[2] V. A. Eleev, “O nekotorykh kraevykh zadachakh dlya smeshannykh nagruzhennykh uravnenii vtorogo i tretego poryadka”, Diff. uravneniya, 30:2 (1994), 230–237 | MR | Zbl

[3] V. M. Kaziev, “O zadache Darbu dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Diff. uravneniya, 14:1 (1978), 181–184 | MR | Zbl

[4] V. M. Kaziev, “Zadacha Gursa dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya”, Diff. uravneniya, 17:2 (1981), 313–319 | MR

[5] I. N. Lanin, “Kraevaya zadacha dlya odnogo nagruzhennogo giperbolo-parabolicheskogo uravneniya tretego poryadka”, Diff. uravneniya, 17:1 (1981), 97–106 | MR | Zbl

[6] B. I. Islomov, D. M. Kuryazov, “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya vtorogo poryadka”, DAN RUz, 1996, no. 1, 3–6

[7] D. M. Kuryazov, “Kraevaya zadacha dlya nagruzhennogo uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya”, UzMZh, 1999, no. 5, 40–46 | MR

[8] M. I. Ramazanov, “O nelokalnoi zadache dlya nagruzhennogo uravneniya giperbolo-ellipticheskogo tipa v pryamougolnoi oblasti”, Sibirskii matematicheskii zhurnal, 2:4 (2002), 75–81

[9] K. U. Khubiev, “Ob odnoi zadache dlya nagruzhennogo uravneniya smeshannogo giperbolo-parabolicheskogo tipa”, Doklady AMAN, 7:2 (2005), 74–77 | MR | Zbl

[10] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966, 204 pp.

[11] A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa”, Tr. Matem. Instituta AN SSSR, 41, 1953 | MR | Zbl

[12] M. S. Salakhitdinov, A. K. Urinov, “Nelokalnaya kraevaya zadacha v dvusvyaznoi oblasti dlya uravneniya smeshannogo tipa s negladkimi liniyami vyrozhdeniya”, Doklady AN SSSR, 299:1 (1988), 63–66 | MR | Zbl

[13] B. Islomov, O. Kh. Abdullaev, “Kraevaya zadacha tipa zadachi Bitsadze dlya uravneniya tretego poryadka elliptiko-giperbolicheskogo tipa v dvusvyaznoi oblasti”, Doklady AMAN, 7:1 (2004), 42–46

[14] N. I Muskheleshvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp.