Study the unique solvability of boundary value problem of Frankl for mixed-type equation degenerate on the boundary and within the region
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 20-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the existence and the uniqueness of solution of the Frankl type boundary value problem for degenerating equation of the mixed type are proved.
Keywords: degenerating equation, mixed type, uniqueness, boundary value problem.
Mots-clés : existence
@article{VKAM_2014_1_a2,
     author = {N. K. Ochilova},
     title = {Study the unique solvability of boundary value problem of {Frankl} for mixed-type equation degenerate on the boundary and within the region},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {20--32},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a2/}
}
TY  - JOUR
AU  - N. K. Ochilova
TI  - Study the unique solvability of boundary value problem of Frankl for mixed-type equation degenerate on the boundary and within the region
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 20
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a2/
LA  - ru
ID  - VKAM_2014_1_a2
ER  - 
%0 Journal Article
%A N. K. Ochilova
%T Study the unique solvability of boundary value problem of Frankl for mixed-type equation degenerate on the boundary and within the region
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 20-32
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a2/
%G ru
%F VKAM_2014_1_a2
N. K. Ochilova. Study the unique solvability of boundary value problem of Frankl for mixed-type equation degenerate on the boundary and within the region. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 20-32. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a2/

[1] B. Islomov, N. K. Ochilova, “O kraevoi zadache dlya uravneniya parabolo-giperbolicheskogo tipa s dvumya liniyami i razlichnymi poryadkami vyrozhdeniya”, Uzbekskii matematicheskii zhurnal, 2005, no. 3, 42–53 | MR

[2] M. M. Smirnov, Uravneniya smeshannogo tipa, Nauka, M., 1985, 304 pp. | MR

[3] S. A. Tersenov, Pervaya kraevaya zadacha dlya uravneniya parabolicheskogo tipa smenyayuschimsya napravleniem vremeni, Novosibirsk, 1978, 53 pp.

[4] S. Kh. Akbarova, Kraevye zadachi dlya uravneniya smeshannogo parabolo-giperbolicheskogo i elliptiko-parabolicheskogo tipov s dvumya liniyami i razlichnymi poryadkami vyrozhdeniya, disc. ...kand. fiz.-matem. nauk, Tashkent, 1995, 120 pp.

[5] S. G. Mikhlin, Integralnye uravneniya, Nauka, M., 1947, 304 pp.

[6] Prudnikov A.P., Brychkov Yu.A, Marychev O.I., Integraly i ryady. Dop. glavy, Nauka, M., 1986, 800 pp. | MR

[7] Salakhitdinov M.S., Islomov B., Uravneniya smeshannogo tipa s dvumya linyami vyrozhdeniya, MUMTOZ SUZ, Tashkent, 2009, 264 pp.