Formulation and method of solving certain boundary value problems for a class of equations third order parabolic-hyperbolic type
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the methods of investigation of some boundary value problems for a class of parabolic-hyperbolic equations of the third order in the hexagonal concave areas that take advantage of the study of problems of mathematical physics in the magistracy.
Keywords: operator boundary conditions, the condition of bonding, Volterra integral equation of the second kind.
@article{VKAM_2014_1_a0,
     author = {M. Mamajonov and H. M. Shermatova and H. Mukadasov},
     title = {Formulation and method of solving certain boundary value problems for a class of equations third order parabolic-hyperbolic type},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--13},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_1_a0/}
}
TY  - JOUR
AU  - M. Mamajonov
AU  - H. M. Shermatova
AU  - H. Mukadasov
TI  - Formulation and method of solving certain boundary value problems for a class of equations third order parabolic-hyperbolic type
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2014
SP  - 7
EP  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2014_1_a0/
LA  - ru
ID  - VKAM_2014_1_a0
ER  - 
%0 Journal Article
%A M. Mamajonov
%A H. M. Shermatova
%A H. Mukadasov
%T Formulation and method of solving certain boundary value problems for a class of equations third order parabolic-hyperbolic type
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2014
%P 7-13
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2014_1_a0/
%G ru
%F VKAM_2014_1_a0
M. Mamajonov; H. M. Shermatova; H. Mukadasov. Formulation and method of solving certain boundary value problems for a class of equations third order parabolic-hyperbolic type. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2014), pp. 7-13. http://geodesic.mathdoc.fr/item/VKAM_2014_1_a0/

[1] I. M. Gelfand, “Nekotorye voprosy analiza i differentsialnykh uravnenii”, UMN, XIV:3 (87) (1959), 3–19

[2] G. M. Struchina, “Zadacha o sopryazhenii dvukh uravnenii”, Inzhener. fiz. zhurn., 4:11 (1961), 99–104

[3] Ya. S. Uflyand, “K voprosu o rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, Inzhener. fiz. zhurn., 7:1 (1964), 89–92

[4] L. A. Zolina, “O kraevoi zadache dlya modelnogo uravneniya giperbolo-parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 6:6 (1966), 991–1001 | MR | Zbl

[5] T. D. Dzhuraev, A. Sopuev, M. Mamazhanov, Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, FAN, Tashkent, 1986, 220 pp.

[6] T. D. Dzhuraev, M. Mamazhanov, “O korrektnoi postanovke kraevykh zadach dlya odnogo klassa uravnenii tretego poryadka parabolo-giperbolicheskogo tipa”, Differentsialnye uravneniya, 19:1 (1983), 37–50 | MR