Model subdiffusion radon in fractal porous medium
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2013), pp. 46-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of subdiffusion radon without advection. With the help of the Green's function found a solution model. It is shown that it is a generalization of the previously known classical solutions.
Keywords: Green function, generalized function Wright, function of Mittag-Leffler.
@article{VKAM_2013_2_a6,
     author = {R. I. Parovik},
     title = {Model subdiffusion radon in fractal porous medium},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {46--51},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2013_2_a6/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Model subdiffusion radon in fractal porous medium
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2013
SP  - 46
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2013_2_a6/
LA  - ru
ID  - VKAM_2013_2_a6
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Model subdiffusion radon in fractal porous medium
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2013
%P 46-51
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2013_2_a6/
%G ru
%F VKAM_2013_2_a6
R. I. Parovik. Model subdiffusion radon in fractal porous medium. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2013), pp. 46-51. http://geodesic.mathdoc.fr/item/VKAM_2013_2_a6/

[1] R. R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi. B, 133 (1986), 425–430 | DOI

[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[3] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp.

[4] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp.

[5] R. I. Parovik, “Zadacha Koshi dlya nelokalnogo uravneniya diffuzii-advektsii radona vo fraktalnoi srede”, Vestnik SamGTU. Ser. Fiziko-matematicheskie nauki, 2010, no. 1(20), 127–132 | DOI

[6] R. I. Parovik, “Metod funktsii Grina dlya odnogo differentsialnogo ravneniya drobnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2010, no. 1(1), 17-23 | MR

[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[8] V. V. Uchaikin, “Avtomodelnaya anomalnaya diffuziya i ustoichivye zakony”, Uspekhi fizicheskikh nauk, 173:8 (2003), 847–876 | DOI