Using modes of free oscillation of a rotating viscous fluid in the large-scale dinamo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2013), pp. 33-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considered a model of large-scale magneto-convection in a roteting spherical shell. Velocity expressed of the one of the modes of free oscillation of a viscous conduction fluid in the shell. The stationary modes of convection were found. An ability of the dynamo was approved in this model.
Keywords: dynamo, spherical shell, free oscillation.
Mots-clés : magneto-convection
@article{VKAM_2013_2_a4,
     author = {G. M. Vodinchar},
     title = {Using modes of free oscillation of a rotating viscous fluid in the large-scale dinamo},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {33--42},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2013_2_a4/}
}
TY  - JOUR
AU  - G. M. Vodinchar
TI  - Using modes of free oscillation of a rotating viscous fluid in the large-scale dinamo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2013
SP  - 33
EP  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2013_2_a4/
LA  - ru
ID  - VKAM_2013_2_a4
ER  - 
%0 Journal Article
%A G. M. Vodinchar
%T Using modes of free oscillation of a rotating viscous fluid in the large-scale dinamo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2013
%P 33-42
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2013_2_a4/
%G ru
%F VKAM_2013_2_a4
G. M. Vodinchar. Using modes of free oscillation of a rotating viscous fluid in the large-scale dinamo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2013), pp. 33-42. http://geodesic.mathdoc.fr/item/VKAM_2013_2_a4/

[1] Ya. B. Zeldovich, A. A. Ruzmaikin, D. D. Sokolov, Magnitnye polya v astrofizike, Regulyarnaya i khaoticheskaya dinamika, M.- Izhevsk, 2006, 384 pp.

[2] G. Glatzmaier, P. Roberts, “A three-dimensional self-consistent field reversal”, Nature, 377 (1995), 203–209 | DOI

[3] W. Kuang, J. Bloxman, “An Earth-like numerical dynamo model”, Nature, 389 (1997), 371–374 | DOI

[4] E. Lorenz, “Deterministic nonperiodic flow”, Journal Atmos. Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Kh. Grinspen, Teoriya vraschayuschikhsya zhidkostei, Gidrometeoizdat, L., 1975, 304 pp.

[6] L. M. Rozenknop, E. L. Reznikov, “O sobstvennykh kolebaniyakh vraschayuscheisya vyazkoi zhidkosti vo vneshnem yadre Zemli”, Voprosy geodinamiki i seismologii, Vychislitelnaya seismologiya, 30, Geos, M., 1998, 121–131

[7] R. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982, 486 pp. | MR

[8] Merril R., McElhinny M., McFadden P., The Magnetic Field of the Earth, Acad. Press, N.Y., 1996, 532 pp.

[9] G. M. Vodinchar, B. M. Shevtsov, “Malomodovaya model konvektsii vo vraschayuschemsya sharovom sloe vyazkoi zhidkosti”, Vychislitelnye tekhnologii, 14:4 (2009), 3–15 | Zbl

[10] O. N. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 232 pp. | MR

[11] Ershov S.V., Malinetskii G.G., Rusmaikin A.A., “A generalized two-disk dynamo model”, Geophys. Astrophys. Fluid Dynam., 47 (1989), 251–277 | DOI | MR

[12] V. I. Potapov, “Vizualizatsiya fazovykh traektorii dinamicheskoi sistemy Rikitaki”, Nelineinaya dinamika, 6:2 (2010), 255–265