On subgroups of almost amalgamated free product two groups with finite amalgamated subgroup
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2013), pp. 43-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article demonstrates the features of the machine study of the internal structure of finite and infinite discrete groups.
Mots-clés : group
Keywords: subgroup, the order of the subgroup, free product.
@article{VKAM_2013_1_a4,
     author = {A. P. Goryushkin},
     title = {On subgroups of almost amalgamated free product two groups with finite amalgamated subgroup},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {43--55},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2013_1_a4/}
}
TY  - JOUR
AU  - A. P. Goryushkin
TI  - On subgroups of almost amalgamated free product two groups with finite amalgamated subgroup
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2013
SP  - 43
EP  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2013_1_a4/
LA  - ru
ID  - VKAM_2013_1_a4
ER  - 
%0 Journal Article
%A A. P. Goryushkin
%T On subgroups of almost amalgamated free product two groups with finite amalgamated subgroup
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2013
%P 43-55
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2013_1_a4/
%G ru
%F VKAM_2013_1_a4
A. P. Goryushkin. On subgroups of almost amalgamated free product two groups with finite amalgamated subgroup. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2013), pp. 43-55. http://geodesic.mathdoc.fr/item/VKAM_2013_1_a4/

[1] A. P. Goryushkin, “O gruppakh s predstavleniem $,b, a^n=1, ab=b^3a^3>$”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2010, no. 1(1), 8–11

[2] A. P. Goryushkin, V. A. Goryushkin, “O nekotorykh svoistvakh 2-porozhdennykh grupp”, Materialy regionalnoi nauchno-prakticheskoi konferentsii, Petropavlovsk-Kamchatskii, 2010, 17–19

[3] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, In-t matematiki SO AN SSSR, 11, Novosibirsk, 1990

[4] R. Brandl, J. S. Wilson, “Characterization of Finite Soluble Groups by Laws in a Small Number of Variables”, Journal of algebra, 116 (1988), 334–341 | DOI | MR | Zbl

[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, In-t matematiki SO RAN, 17, Novosibirsk, 2010