The refined model of the macroseismic field for the Kurile-Kamchatka region earthquakes equation definition. Interpolation and regression approaches
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2013), pp. 30-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work the interpolation and regression models of the macroseismic fi eld classical type dependence are off ered for the Kurile-Kamchatka region earthquakes. The given models essentially expand the region of the dependence now in use applicability, have the relatively high accuracy and are to a considerable degree free from constant biases in the magnitudes and the hypocentral distances wide range.
Keywords: seismicity, earthquake, macroseismic field, seismic hazard.
@article{VKAM_2013_1_a3,
     author = {A. V. Solomatin},
     title = {The refined model of the macroseismic field for the {Kurile-Kamchatka} region earthquakes equation definition. {Interpolation} and regression approaches},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {30--42},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2013_1_a3/}
}
TY  - JOUR
AU  - A. V. Solomatin
TI  - The refined model of the macroseismic field for the Kurile-Kamchatka region earthquakes equation definition. Interpolation and regression approaches
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2013
SP  - 30
EP  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2013_1_a3/
LA  - ru
ID  - VKAM_2013_1_a3
ER  - 
%0 Journal Article
%A A. V. Solomatin
%T The refined model of the macroseismic field for the Kurile-Kamchatka region earthquakes equation definition. Interpolation and regression approaches
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2013
%P 30-42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2013_1_a3/
%G ru
%F VKAM_2013_1_a3
A. V. Solomatin. The refined model of the macroseismic field for the Kurile-Kamchatka region earthquakes equation definition. Interpolation and regression approaches. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 1 (2013), pp. 30-42. http://geodesic.mathdoc.fr/item/VKAM_2013_1_a3/

[1] F. F. Aptikaev, N. V. Shebalin, “Utochnenie korrelyatsii mezhdu urovnem makroseismicheskogo effekta i dinamicheskimi parametrami dvizheniya grunta”, Vopr. inzhener. seismologii, 1988, no. 29, 98–108

[2] V. N. Strakhov, V. I. Ulomov, L. S. Shumilina, “Komplekt novykh kart obschego seismicheskogo raionirovaniya Severnoi Evrazii”, Fizika Zemli, 1998, no. 10, 92–96

[3] A. A. Gusev, L. S. Shumilina, K. N. Akatova, “Ob otsenke seismicheskoi opasnosti dlya goroda Petropavlovska-Kamchatskogo na osnove nabora stsenarnykh zemletryasenii”, Vestnik ONZ RAN. Elektron. nauch.-inform. zhurn., 2005, no. 1(23) (data obrascheniya: 24.11.2008) http://www.scgis.ru/russian/cp1251/h_dgggms/1-2005/screp-2.pdf

[4] A. A. Gusev, L. S. Shumilina, “Modelirovanie svyazi ball-magnituda-rasstoyanie na osnove predstavleniya o nekogerentnom protyazhennom ochage”, Vulkanologiya i seismologiya, 21:4 (1999), 29– 40 | Zbl

[5] N. V. Shebalin, “Metody ispolzovaniya inzhenerno-seismologicheskikh dannykh pri seismicheskom raionirovanii”, Seismicheskoe raionirovanie SSSR, 1968, 95–111 | Zbl

[6] N. V. Shebalin, “O ravnomernosti shkaly ballnosti”, Seismicheskaya shkala i metody izmereniya seismicheskoi intensivnosti, Nauka, M., 1975, 222–233 | Zbl

[7] S. A. Fedotov, L. S. Shumilina, “Seismicheskaya sotryasaemost Kamchatki”, Izv. AN SSSR. Fizika Zemli, 1971, no. 9, 3–15 | MR

[8] M. A. Sadovskii, “Seismika vzryvov i seismologiya”, Geofizika i fizika vzryva: izbr. tr., Nauka, M., 1999, 119–127

[9] ShakeMapfi Manual. Technical manual, users guide, and software guide, , 2005 (data obrascheniya: 22.01.2011) http://pubs.usgs.gov/tm/2005/12A01/pdf/508TM12-A1.pdf

[10] N. V. Kondorskaya, N. V. Shebalin (otv. red.), Novyi katalog silnykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g., Nauka, M., 1977, 536 pp.