Apply modified method of the boundary elements to theory potential problems
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 42-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for solving the potential problem, based on the boundary element method, is proposed. Some example of the Dirichlet problem for the circle and the cube are consider. The numerical-analytical solution of the boundary element method were compared with the analytical solution and the numerical solution of the boundary element method
Keywords: potential problem, boundary element, analytic calculation.
@article{VKAM_2012_2_a5,
     author = {V. P. Fedotov and A. V. Gorshkov},
     title = {Apply modified method of the boundary elements to theory potential problems},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {42--50},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2012_2_a5/}
}
TY  - JOUR
AU  - V. P. Fedotov
AU  - A. V. Gorshkov
TI  - Apply modified method of the boundary elements to theory potential problems
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2012
SP  - 42
EP  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2012_2_a5/
LA  - ru
ID  - VKAM_2012_2_a5
ER  - 
%0 Journal Article
%A V. P. Fedotov
%A A. V. Gorshkov
%T Apply modified method of the boundary elements to theory potential problems
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2012
%P 42-50
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2012_2_a5/
%G ru
%F VKAM_2012_2_a5
V. P. Fedotov; A. V. Gorshkov. Apply modified method of the boundary elements to theory potential problems. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2012), pp. 42-50. http://geodesic.mathdoc.fr/item/VKAM_2012_2_a5/

[1] Brebbiya K., Telles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987, 524 pp.

[2] Khomyakov A. N., “Metod granichnykh elementov povyshennoi tochnosti v zadachakh gidrodinamiki idealnoi zhidkosti”, Vychislitelnye metody i programmirovanie, 9 (2008), 401–404 | Zbl

[3] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, GIFML, M., 1959, 232 pp.

[4] Zarubin V. S., Kuvyrkin G. N., O vozmozhnostyakh metoda granichnykh elementov pri modelirovanii kontinualnykh sistem, http://technomag.edu.ru/doc/48397.html

[5] Fedotov V. P., Nefedova O. A., “Primenenie modifitsirovannogo metoda granichnykh elementov dlya resheniya parabolicheskikh zadach”, Vestn. Sam. gos. tekhn. un-ta. Cer. Fiz.-mat. nauki, 2011, no. 4(25), 93–101 | DOI

[6] Fedotov V. P., “Modifitsirovannyi metod granichnykh elementov dlya resheniya zadach kolebaniya plastin”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2011, no. 2(3), 18–32

[7] Fedotov V. P., Spevak L. F., “Analiticheskoe integrirovanie funktsii vliyaniya dlya resheniya zadach uprugosti i teorii potentsiala metodom granichnykh elementov”, Matematicheskoe modelirovanie, 19:2 (2007), 87–104 | MR

[8] Fedotov V. P., Gorshkov A. V., “Chislenno-analiticheskii metod resheniya zadach uprugosti s osobennostyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2005, no. 38, 29–34 | DOI | MR | Zbl